变态跳台阶(待深入)

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
public class Solution {
    public int JumpFloorII(int target) {
        /*

    关于本题,前提是n个台阶会有一次n阶的跳法。分析如下: 
      f(1) = 1 
      f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。 
      f(3) = f(3-1) + f(3-2) + f(3-3)  
      ... 
      f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)  

      说明:  
      1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。 
      2)n = 1时,只有1种跳法,f(1) = 1 
      3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)  
      4) n = 3时,会有三种跳得方式,1阶、2阶、3阶, 


          那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3) 

          因此结论是f(3) = f(3-1)+f(3-2)+f(3-3) 
      5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论: 

          f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) =>
      f(0) + f(1) + f(2) + f(3) + ... + f(n-1) 



      6) 由以上已经是一种结论,但是为了简单,我们可以继续简化: 

          f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) =
      f(0) + f(1) + f(2) + f(3) + ... + f(n-2) 

          f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) +
      f(n-1) = f(n-1) + f(n-1) 

          可以得出: 

          f(n) = 2*f(n-1) 



      7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为: 

                    | 1       ,(n=0 )  
      f(n) =     | 1       ,(n=1 ) 

                    | 2*f(n-1),(n>=2)*/
        
        //思路2:因为每个台阶一次都能跳到,所以每个台阶都可以分为跳与不跳,最后一个台阶必须跳
        if(target <= 0){
            return 0;
        }
        
         if(target == 1){
            return 1;
        }
        
         return 2*JumpFloorII(target-1);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值