常用数据结构和算法总结

算法知识总结

本部分主要是笔者在学习算法知识和一些相关面试题所做的笔记,如果出现错误,希望大家指出!

目录

常用算法和数据结构总结

排序

冒泡排序

冒泡排序的基本思想是,对相邻的元素进行两两比较,顺序相反则进行交换,这样,每一趟会将最小或最大的元素“浮”到顶端,
最终达到完全有序。

代码实现:


function bubbleSort(arr) {
   
    if (!Array.isArray(arr) || arr.length <= 1) return;
    let lastIndex = arr.length - 1;
    while (lastIndex > 0) {
    // 当最后一个交换的元素为第一个时,说明后面全部排序完毕
        let flag = true, k = lastIndex;
        for (let j = 0; j < k; j++) {
   
            if (arr[j] > arr[j + 1]) {
   
                flag = false;
              	lastIndex = j; // 设置最后一次交换元素的位置
                [arr[j], arr[j+1]] = [arr[j+1], arr[j]];
            }
        }
      	if (flag) break;
    }
}

冒泡排序有两种优化方式。

一种是外层循环的优化,我们可以记录当前循环中是否发生了交换,如果没有发生交换,则说明该序列已经为有序序列了。
因此我们不需要再执行之后的外层循环,此时可以直接结束。

一种是内层循环的优化,我们可以记录当前循环中最后一次元素交换的位置,该位置以后的序列都是已排好的序列,因此下
一轮循环中无需再去比较。

优化后的冒泡排序,当排序序列为已排序序列时,为最好的时间复杂度为 O(n)。

冒泡排序的平均时间复杂度为 O(n²) ,最坏时间复杂度为 O(n²) ,空间复杂度为 O(1) ,是稳定排序。

详细资料可以参考:
《图解排序算法(一)》
《常见排序算法 - 鸡尾酒排序 》
《前端笔试&面试爬坑系列—算法》
《前端面试之道》

选择排序

选择排序的基本思想为每一趟从待排序的数据元素中选择最小(或最大)的一个元素作为首元素,直到所有元素排完为止。

在算法实现时,每一趟确定最小元素的时候会通过不断地比较交换来使得首位置为当前最小,交换是个比较耗时的操作。其实
我们很容易发现,在还未完全确定当前最小元素之前,这些交换都是无意义的。我们可以通过设置一个变量 min,每一次比较
仅存储较小元素的数组下标,当轮循环结束之后,那这个变量存储的就是当前最小元素的下标,此时再执行交换操作即可。

代码实现:

function selectSort(array) {
   

  let length = array.length;

  // 如果不是数组或者数组长度小于等于1,直接返回,不需要排序 
  if (!Array.isArray(array) || length <= 1) return;

  for (let i = 0; i < length - 1; i++) {
   

    let minIndex = i; // 设置当前循环最小元素索引

    for (let j = i + 1; j < length; j++) {
   

      // 如果当前元素比最小元素索引,则更新最小元素索引
      if (array[minIndex] > array[j]) {
   
        minIndex = j;
      }
    }

    // 交换最小元素到当前位置
    // [array[i], array[minIndex]] = [array[minIndex], array[i]];
    swap(array, i, minIndex);
  }

  return array;
}

// 交换数组中两个元素的位置
function swap(array, left, right) {
   
  var temp = array[left];
  array[left] = array[right];
  array[right] = temp;
}

选择排序不管初始序列是否有序,时间复杂度都为 O(n²)。

选择排序的平均时间复杂度为 O(n²) ,最坏时间复杂度为 O(n²) ,空间复杂度为 O(1) ,不是稳定排序。

详细资料可以参考:
《图解排序算法(一)》

插入排序

直接插入排序基本思想是每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止。

插入排序核心–扑克牌思想: 就想着自己在打扑克牌,接起来一张,放哪里无所谓,再接起来一张,比第一张小,放左边,
继续接,可能是中间数,就插在中间…依次

代码实现:

function insertSort(array) {
   

  let length = array.length;

  // 如果不是数组或者数组长度小于等于1,直接返回,不需要排序 
  if (!Array.isArray(array) || length <= 1) return;

  // 循环从 1 开始,0 位置为默认的已排序的序列
  for (let i = 1; i < length; i++) {
   
    let temp = array[i]; // 保存当前需要排序的元素
    let j = i;

    // 在当前已排序序列中比较,如果比需要排序的元素大,就依次往后移动位置
    while (j -1 >= 0 && array[j - 1] > temp) {
   
      array[j] = array[j - 1];
      j--;
    }

    // 将找到的位置插入元素
    array[j] = temp;
  }

  return array;
}

当排序序列为已排序序列时,为最好的时间复杂度 O(n)。

插入排序的平均时间复杂度为 O(n²) ,最坏时间复杂度为 O(n²) ,空间复杂度为 O(1) ,是稳定排序。

详细资料可以参考:
《图解排序算法(一)》

希尔排序

希尔排序的基本思想是把数组按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的元
素越来越多,当增量减至1时,整个数组恰被分成一组,算法便终止。

代码实现:

function hillSort(array) {
   

  let length = array.length;

  // 如果不是数组或者数组长度小于等于1,直接返回,不需要排序 
  if (!Array.isArray(array) || length <= 1) return;


  // 第一层确定增量的大小,每次增量的大小减半
  for (let gap = parseInt(length >> 1); gap >= 1; gap = parseInt(gap >> 1)) {
   

    // 对每个分组使用插入排序,相当于将插入排序的1换成了 n
    for (let i = gap; i < length; i++) {
   
      let temp = array[i];
      let j = i;

      while (j - gap >= 0 && array[j - gap] > temp) {
   
        array[j] = array[j - gap];
        j -= gap;
      }
      array[j] = temp;
    }
  }

  return array;
}

希尔排序是利用了插入排序对于已排序序列排序效果最好的特点,在一开始序列为无序序列时,将序列分为多个小的分组进行
基数排序,由于排序基数小,每次基数排序的效果较好,然后在逐步增大增量,将分组的大小增大,由于每一次都是基于上一
次排序后的结果,所以每一次都可以看做是一个基本排序的序列,所以能够最大化插入排序的优点。

简单来说就是,由于开始时每组只有很少整数,所以排序很快。之后每组含有的整数越来越多,但是由于这些数也越来越有序,
所以排序速度也很快。

希尔排序的时间复杂度根据选择的增量序列不同而不同,但总的来说时间复杂度是小于 O(n^2) 的。

插入排序是一个稳定排序,但是在希尔排序中,由于相同的元素可能在不同的分组中,所以可能会造成相同元素位置的变化,
所以希尔排序是一个不稳定的排序。

希尔排序的平均时间复杂度为 O(nlogn) ,最坏时间复杂度为 O(n^s) ,空间复杂度为 O(1) ,不是稳定排序。

详细资料可以参考:
《图解排序算法(二)之希尔排序》
《数据结构基础 希尔排序 之 算法复杂度浅析》

归并排序

归并排序是利用归并的思想实现的排序方法,该算法采用经典的分治策略。递归的将数组两两分开直到只包含一个元素,然后
将数组排序合并,最终合并为排序好的数组。

代码实现:

function mergeSort(array) {
   

  let length = array.length;

  // 如果不是数组或者数组长度小于等于0,直接返回,不需
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
引用中提到的这本书主要讲解的是C#语言的数据结构算法,所以对于Unity数据结构算法的讲解可能会有所欠缺。然而,Unity作为一款游戏开发引擎,也有其自己的数据结构算法。在Unity中,常用数据结构包括但不限于数组、列表、字典和队列等,而常用算法包括搜索算法、排序算法和图形算法等。 对于Unity中的数据结构,数组是最基本和常用数据结构之一。它可以用来存储一系列相同类型的元素,可以通过索引来访问和操作数组中的元素。列表则是一种动态大小的数组,可以方便地增加或删除元素。字典是一种键值对的数据结构,可以通过键来快速查找、插入和删除元素。队列是一种先进先出(FIFO)的数据结构,可以用于实现一些特定的功能,比如事件触发等。 在Unity中,算法的应用也非常广泛。搜索算法可以用于寻路、查找对象等功能的实现。排序算法可以用于对游戏对象进行排序,以及实现一些需要按照特定顺序展示的功能。图形算法则可以用于渲染和处理图形等方面。 总结起来,Unity数据结构算法的学习主要以Unity引擎为基础,结合C#语言的特性进行应用。通过学习Unity官方文档、教程和参考书籍,掌握Unity中常用数据结构算法,可以更好地进行游戏开发和优化。同时,也可以借助C#语言的数据结构算法的学习,进一步提升对Unity数据结构算法的理解和应用能力。<span class="em">1</span> #### 引用[.reference_title] - *1* [C#数据结构算法](https://download.csdn.net/download/m0_37885525/10656238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Changlon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值