可以构造一个序列使得a[i]=ia[i]=ia[i]=i.
方法:
取g=n+1g=n+1g=n+1,修正第jjj个元素为sg+jsg+jsg+j,从而Δj=sg+j−(p+a[j])\Delta_j=sg+j-(p+a[j])Δj=sg+j−(p+a[j]),其中p=∑i=j+1nΔi\displaystyle p=\sum_{i=j+1}^{n} {\Delta_i}p=i=j+1∑nΔi,此时可知:
对序列取模以后a[i]≡i(modg)a[i]\equiv i \pmod ga[i]≡i(modg).
总操作数正好为n+1n+1n+1.
#include <cstdio>
int a[2005];
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
int g=n+1,added=0,tg;
printf("%d\n",n+1);
for(int i=n;i>=1;i--){
a[i]=(a[i]+added)%g;
tg=g+i-a[i];
printf("1 %d %d\n",i,tg);
added+=tg;
added%=g;
}
printf("2 %d %d\n",n,g);
}