Codeforces Round #525 Div. 2 1088C - Ehab and a 2-operation task(构造)

本文介绍了一种构造序列的方法,使得序列中的每个元素a[i]等于其下标i乘以一个特定的修正值。通过设定g=n+1,并调整序列中每个元素,确保在取模运算后,a[i]≡i(mod g)。该算法的总操作数为n+1,适用于序列的构造和修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可以构造一个序列使得a[i]=ia[i]=ia[i]=i.
方法:
g=n+1g=n+1g=n+1,修正第jjj个元素为sg+jsg+jsg+j,从而Δj=sg+j−(p+a[j])\Delta_j=sg+j-(p+a[j])Δj=sg+j(p+a[j]),其中p=∑i=j+1nΔi\displaystyle p=\sum_{i=j+1}^{n} {\Delta_i}p=i=j+1nΔi,此时可知:
对序列取模以后a[i]≡i(modg)a[i]\equiv i \pmod ga[i]i(modg).
总操作数正好为n+1n+1n+1.

#include <cstdio>
int a[2005];
int main(){
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
	}
	int g=n+1,added=0,tg;
	printf("%d\n",n+1);
	for(int i=n;i>=1;i--){
		a[i]=(a[i]+added)%g;
		tg=g+i-a[i];
		printf("1 %d %d\n",i,tg);
		added+=tg;
		added%=g;
	}
	printf("2 %d %d\n",n,g);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值