抽象代数思考题

抽象代数思考题

Proposition 1 Z,+ Proposition 1  ⟨ Z , + ⟩ 是循环群.
1|a,a0 1 | a , a ≠ 0 ,所以 Z,+=1,+ ⟨ Z , + ⟩ = ⟨ 1 , + ⟩ .

Proposition 2  Proposition 2  任意两个同阶循环群一定是同构的.
n n 阶循环群生成元为a,那么可以构造同构:

φ:Zn,+nxG,ax φ : ⟨ Z n , + n ⟩ → ⟨ G , ⋅ ⟩ x ↦ a x

由同构的等价性质,任意两个同阶循环群是同构的( Z=Z Z ∞ = Z ).

Proposition 3  Proposition 3  任意循环群的子群是循环群。
由命题2,我们直接在 Zn,+ ⟨ Z n , + ⟩ ( +nn + n 的 n 略去)上研究循环群的性质.
n= n = ∞ ,则任意集合 S={a1,a2,...an} S = { a 1 , a 2 , . . . a n } ,一定有 S,+=(a1,a2,...an),+ ⟨ S , + ⟩ = ⟨ ( a 1 , a 2 , . . . a n ) , + ⟩ ,所以 Z Z 的子群是循环群,记为(a1,a2,...,an)Z.
n< n < ∞ ,设 Zn Z n 子群为 mZn m Z n ,则由 n0mZn n ≡ 0 ∈ m Z n ,得 m|[m,n] m | [ m , n ] (m是 mZn m Z n 中最小的元素).易知 mZn,+n ⟨ m Z n , + n ⟩ 是循环群 m,+n ⟨ m , + n ⟩ .
总之 Zn Z n 的子群 mZn m Z n 是循环群.

无零因子有幺元的环是整环.

Proposition 4  Proposition 4  M M 是整环,那么当且仅当M[x1,x2,...,xn]是整环.
充分性: M M 是整环,于是0,1M分别是零元和幺元,那么对于任意形式多项式函数 f(x⃗ )M[x⃗ ],0f(x⃗ )=0,1f(x⃗ )=1 f ( x → ) ∈ M [ x → ] , 0 ⋅ f ( x → ) = 0 , 1 ⋅ f ( x → ) = 1 ,所以 M[x⃗ ] M [ x → ] 是整环.
必要性 M[x⃗ ] M [ x → ] 是整环,那么存在 0,1M[x⃗ ] 0 , 1 ∈ M [ x → ] 分别是零元和幺元,对于 M0={f0|degf0=0} M 0 = { f 0 | deg ⁡ f 0 = 0 } 来说,其与 M M 同构,并且M0是整环,所以 M M 是整环.

Proposition 5  M M 是无零因子环,那么当且仅当deg(f×g)=degf+degg,f,gM[x1,x2,...,xn].时 M[x1,x2,...,xn] M [ x 1 , x 2 , . . . , x n ] 是整环.
暂略…先看看高代下册再来看这个问题吧_(:3」∠)_.

Ideal 1  Ideal 1 
考虑环 X,+, ⟨ X , + , ⋅ ⟩ 的加法群 X,+ ⟨ X , + ⟩ 的子群 H,+ ⟨ H , + ⟩ .如果 GhH G h ∈ H ,那么 H H X的理想。看起来和陪集有点像,其实根本不同QAQ…

Proposition 6  Proposition 6  X ∘ 是 X 上二元运算,且对 x,y ∀ x , y 满足 (xy)y=y(yx)=x ( x ∘ y ) ∘ y = y ∘ ( y ∘ x ) = x ,证明 是交换的.
证明:
xy=y(y(xy))=y((x(xy))(xy))=yx x ∘ y = y ∘ ( y ∘ ( x ∘ y ) ) = y ∘ ( ( x ∘ ( x ∘ y ) ) ∘ ( x ∘ y ) ) = y ∘ x .
反思:首先 =...= 左 式 = . . . = 右 式 ,如果是抽象集合,中间一定反复利用,…貌似没有其他的证法。

Proposition 7  Proposition 7  XX, X ∗ 是 幺 半 群 ⟨ X , ∘ ⟩ 所有单位元素组成的集合,证明 X X ∗ 对 ∘ 是封闭的.
证明:
x,yX x , y ∈ X ∗ ,则 xy x ∘ y 也可逆,所以 xyX x ∘ y ∈ X ∗ .
(原题是幺群,但我觉得按它的定义…这里应该是幺半群..)
Proposition 8  Proposition 8  S,+ ⟨ S , + ⟩ N,+ ⟨ N , + ⟩ 的子半群,满足若 a,bS a , b ∈ S ,那么 |ab|S | a − b | ∈ S ,证明S是循环群( a0S,S={an0|nN} ∃ a 0 ∈ S , S = { a 0 n | n ∈ N } ?).
证明:
由辗转相除法 a,bS(a,b)S a , b ∈ S ⇒ ( a , b ) ∈ S ,由数学归纳法若给 S S 中元素任意编号a1,...,an,...,若 Pn=(a1,...,an)S,Pn+1=(Pn,an+1)S P n = ( a 1 , . . . , a n ) ∈ S , 那 么 P n + 1 = ( P n , a n + 1 ) ∈ S ,又 P1 P ⩾ 1 ,于是 PS,P|ai,aiS ∃ P ∈ S , P | a i , a i ∈ S ,于是 S={nP|nN}. S = { n P | n ∈ N } .

Proposition 9  Proposition 9  S1,S2 S 1 , S 2 是交换半群 X X 的子半群,证明S1S2={s1s2|s1S1,s2S2}也是 X X 的子半群.
证明:
a1b1,a2b2S1S2,那么 a1b1a2b2=(a1a2)(b1b2)S1S2 a 1 b 1 a 2 b 2 = ( a 1 a 2 ) ( b 1 b 2 ) ∈ S 1 S 2 .
Proposition 10  Proposition 10  将下列概念由群推广到半群:
1.由一个群的子集生成的子群;
2.循环群;
3.群的极小生成集合;
4.有限生成的群.

1.考虑类似矩阵的 P, ⟨ P , ⋅ ⟩ ,若 S={s1,s2,...,sn} S = { s 1 , s 2 , . . . , s n } ,则 {sa11sa22...sann|a1,a2,...,anN,a1+a2++an>0} { s 1 a 1 s 2 a 2 . . . s n a n | a 1 , a 2 , . . . , a n ∈ N , a 1 + a 2 + ⋯ + a n > 0 } .
事实上这样的子群应该是交换的,证明从略。
2.只由一个单元素子集生成的半群
3.若 G=S, G = ⟨ S , ⋅ ⟩ ,且 SS,GS, ∀ S ′ ⊂ S , G ≠ ⟨ S ′ , ⋅ ⟩ S S G的极小生成集合.
4.若 |S|< | S | < ∞ ,称 G G 是有限生成的.
举例:一切无限维矩阵组成的集合M[K],不是有限生成的.其是半群,因为 A(BC)=(AB)C A ( B C ) = ( A B ) C .
Proposition 11  Proposition 11  G, ⟨ G , ⋅ ⟩ 是交换半群,且有相消律成立,记 Q[G]={(p,q)|p,qG} Q [ G ] = { ( p , q ) | p , q ∈ G } ,若 ad=bc,(a,b)=(c,d) a d = b c , 则 ( a , b ) = ( c , d ) ,证明 Q[G],,(a,b)(c,d):=(ac,bd) ⟨ Q [ G ] , ∘ ⟩ , ( a , b ) ∘ ( c , d ) := ( a c , b d ) 是交换群.
证明:
结合律:
((a,b)(c,d))(e,f)=(ac,bd)(e,f)=(ace,bdf) ( ( a , b ) ∘ ( c , d ) ) ∘ ( e , f ) = ( a c , b d ) ∘ ( e , f ) = ( a c e , b d f )
(a,b)((c,d)(e,f))=(a,b)(ce,df)=(ace,bdf) ( a , b ) ∘ ( ( c , d ) ∘ ( e , f ) ) = ( a , b ) ∘ ( c e , d f ) = ( a c e , b d f )
所以结合律成立.
幺元:
(1,1)(a,b)=(a,b) ( 1 , 1 ) ∘ ( a , b ) = ( a , b ) ,故 (1,1) ( 1 , 1 ) 是幺元,
进而 r(1,1)(a,b)=(a,b) r ( 1 , 1 ) ( a , b ) = ( a , b ) ,故 (r,r),rN+ ( r , r ) , r ∈ N + 是幺元.
逆元:
(a,b)(b,a)=(ab,ba)=(ab,ab)=ab(1,1)=(1,1) ( a , b ) ∘ ( b , a ) = ( a b , b a ) = ( a b , a b ) = a b ( 1 , 1 ) = ( 1 , 1 ) ,故 (a,b) ( a , b ) 的逆元是 (b,a) ( b , a ) .
交换律:
(a,b)(c,d)=(ac,bd)=(ca,db)=(c,d)(a,b) ( a , b ) ∘ ( c , d ) = ( a c , b d ) = ( c a , d b ) = ( c , d ) ∘ ( a , b ) .
Proposition 12  Proposition 12  一个有限半群如果是交换的,且有相消律成立,那么它是交换群.如果它不是交换的呢?
gb=gcb=c g b = g c ⇒ b = c 那么对于所有的 gG g ∈ G ,必须有逆元存在,假设不存在,首先设 |G|=n | G | = n ,则 xeG,gxe ∀ x ≠ e ∈ G , g x ≠ e ,设 gg=ag,g=e g g = a ≠ g , 否 则 g = e ,设 ga=bg g a = b ≠ g ,否则 a=g a = g ,设 gb=cg g b = c ≠ g ,否则 b=g b = g ,…,这样的乘法可以无限做下去,但是由于 G G 是有限半群,这是不可能的,那么必然有gl=g,1en,于是 gl1=e g l − 1 = e , l=1,g=e,l=2g1=gl2 l = 1 , 则 g = e , l = 2 , 则 g − 1 = g l − 2 .于是所有元素都有逆元.
在上面所证中只会有一个元素满足 gg=g=ge(e) g g = g = g e ( e 是 待 定 的 幺 元 ) .

如果不是交换的.
若是左可约的,那么存在左逆元,若是右可约的那么存在右逆元.若既是左可约的又是右可约的,它才是群?
Proposition 13  Proposition 13  群的极小生成集合是唯一的吗?举例说明。
可能大概不是唯一的QAQ…极大线性无关组怎么可能是唯一的。

Proposition 14  Proposition 14  证明如果一个群没有真子群,那么它一定是循环群.
H<G H < G ,那么 GHHh G − H 不 能 由 H 中 任 意 元 素 h 表 示 ,自然 gGH,ghk g ′ ∈ G − H , g ≠ h k ,反之亦然.从而它不是循环群.我们能够从这样的陪集分解获得启示.
现在看它的逆否命题:
若它不是循环群,则 gg,g, g ′ ≠ g , ⟨ g ′ , ⋅ ⟩ 是它的子群, gg, g ∉ ⟨ g ′ , ⋅ ⟩ ,所以它是真子群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值