文章目录
题记:本文改编自 Anthropic 公司的研究报告《Building effective agents》。原文发表于 2024 年 12 月 20 日, 由 Erik Schluntz 和 Barry Zhang 撰写。本文对原文进行了翻译、整理和补充, 旨在为中文读者提供关于构建高效 AI 代理系统的实用指南。
过去一年里, Anthropic 与数十个团队合作, 帮助他们在各行各业中构建基于大语言模型 (LLM) 的 AI 代理系统。有趣的是, 最成功的实现往往并不依赖复杂的框架或专门的库, 而是采用简单、可组合的模式来构建。
这篇文章将分享 Anthropic 与客户合作以及自身构建代理系统的经验, 为开发者提供一些实用建议, 帮助他们构建高效的 AI 代理。
什么是 AI 代理?
“代理” 这个词可以有多种定义。有些客户将代理定义为完全自主的系统, 能够长期独立运行, 利用各种工具完成复杂任务。另一些则用这个词来描述更具规定性的实现, 遵循预定义的工作流程。Anthropic 将所有这些变体都归类为 “代理系统”, 但在架构上区分了 “工作流” 和 “代理”:
工作流 是通过预定义的代码路径来编排 LLM 和工具的系统。
代理 则是 LLM 能够动态指导自身流程和工具使用的系统, 自主控制如何完成任务。
接下来, 我们将详细探讨这两种类型的代理系统。在附录 1(“实践中的代理”) 中, 还描述了两个客户发现代理系统特别有价值的领