小红叒战小紫

本文介绍了一个使用概率动态规划(DP)解决的卡牌游戏问题,涉及C++编程,计算给定条件下的组合概率。通过递推和模运算实现求解最终结果。
摘要由CSDN通过智能技术生成

 概率dp

#include <iostream>
#include <string>
#include <stack>
#include <vector>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <numeric>
#define ll long long
#define PII pair<int, int>
#define TUP tuple<ll, ll, ll>
using namespace std;
const int N = 60;
const int mod = 1e9 + 7;

int ta[3], tb[3];
ll dp[60][60];//小红还有i张卡片1,小紫还有j张卡片1

ll inv(ll a) {
    ll ret = 1, b = mod - 2;
    while (b) {
        if (b % 2) ret = ret * a % mod;
        b >>= 1;
        a = a * a % mod;
    }
    return ret;
}

int main() {
    int n, m, x;
    cin >> n >> m;
    for (int i = 0; i < n; i++) cin >> x, ta[x]++;
    for (int i = 0; i < m; i++) cin >> x, tb[x]++;
    //dp[i][j] = p1 * dp[i - 1][j] + p2 * dp[i][j - 1];
    //dp[i][j] /= p1 + p2;
    dp[0][0] = 0;
    if (!ta[2] && !tb[2]) {
        cout << 0;
        return 0;
    }
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= m; j++) {
            ll p1 = i * inv(ta[2] + i) % mod * tb[2] % mod * inv(tb[2] + j) % mod;
            ll p2 = ta[2] * inv(ta[2] + i) % mod * j % mod * inv(tb[2] + j) % mod;
            dp[i][j] = dp[i - 1][j] * p1 % mod + p2 * dp[i][j - 1] % mod + 1;
            dp[i][j] *= inv(p1 + p2);
            dp[i][j] %= mod;
        }
    }
    cout << dp[ta[1]][tb[1]];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云儿乱飘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值