分特产题解

题意:

        有n个有标号的盒子和m种有标号的球,每种球有a[i]个,求每个盒子至少放一种球的总方案数。

分析:

        我们可以先考虑--把每个a[i]分到n个盒子里(允许有空盒)那么方案数为\textrm{C}_{n+a[i]-1}^{n-1},根据乘法原理方案数\prod _{i=1}^{m}\textrm{C}_{n+a[i]-1}^{n-1} 当然这样想使不完全正确的,其中包含有人没有的情况;不合法的情况为K[i];(i表示至少有i个盒子为空)(范围从i到n-1,上一步求出必有一人有);即我们要求出看k[x]= \textrm{C}_{n+a[i]-1}^{n-x-1}(也就是求出将a[i]个球放入n-x个盒子中);但是因为k[i]\subseteqk[j](i<j)所以容斥一下;                       \sum^{n-1}_{i=0}(-1)^i\prod^m_{j=1}C(n\!+\!a[j]\!-\!i\!-\!1,n\!-\!i\!-\!1\!)

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e9+7;
ll n,m,te[1010],C[2010][2010];
int main()
{
    freopen("speciall.in","r",stdin);
    freopen("speciall.out","w",stdout);
    C[0][0]=1;
    for(int i=1;i<=2005;i++)
    {
        C[i][0]=1;
        for(int j=1;j<=i;j++)
        {
            C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
        }
    }//预处理
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%lld",&te[i]);
    }
    ll ans=0;
    for(int i=0;i<n;i++)
    {
        ll t=C[n][i];
        for(int j=1;j<=m;j++)
        {
            t=t*C[te[j]+n-i-1][n-i-1]%mod;
        }
        if(i&1) ans=(ans-t+mod)%mod;
        else ans=(ans+mod+t)%mod;
    }
    printf("%lld",(ans+mod)%mod);
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值