提取任务相关成分(Task-related component analysis,TRCA)

目录

前言

TRCA算法介绍

TRCA的模型建立

解析方程的推出

模型方程的求解

Correlaton Maximization(CorrMax)

Covariance Maximization(CovMax)

求解空间滤波器

References
​​​​​​​


前言

所有文档皆为个人学习笔记,如有不当之处,劳请指正。

本文档中的部分符号定义:

1)N_{C} :通道的数量。

TRCA算法介绍

        任务相关成分分析(TRCA),可以提高重复性的SSVEP在多个试验中,被用来提高信噪比(SNR)的SSVEP信号,通过去除背景脑电图(EEG)活动。与CCA相比,TRCA是用被试的EEG信号作为模板而CCA则是用正余弦构造模板。

TRCA的模型建立

        TRCA是一种通过最大化任务期间的再现性来有效提取任务相关成分的方法,在这里我们假设两个信号源:1)任务相关信号 S(t) \in \mathbb{R}   2)任务无关信号 n(t) \in \mathbb{R} 。假设采集到的多通道的EEG信号的线性生成模型为:x(t) \in \mathbb{R}^{N_{C}}。构造如下模型函数:

x_{j}(t) = a_{1,j}s(t)+a_{2,j}n(t) , j = 1, 2, 3, ...,N_{C}

        其中,j 是表示通道的索引,a_{1,j} 和 a_{2,j} 是将源信号映射到EEG信号的混合系数。

模型的函数

任务相关信号与任务无关信号

         在这里,我在网络上找了这样的一张图,S(t) 与 n(t) 分别是任务相关信号与任务无关信号。它们之间存在着这样的关系,S(i) 之间的协方差为一正常数,而n(i) 与 S(t) 之间的协方差为0(或者说几乎为零,即无关)。

        对多通道的EEG信号进行加权求和,得到一个线性的一维信号y(t)。

y(t) = \sum_{j=1}^{N_{C}}w_{j}x_{j}(t)=\sum_{j=1}^{N_{C}}(w_{j}a_{1,j}s(t)+w_{j}a_{2,j}n(t))

        我们希望得到的信号y(t) 就是任务相关信号 S(t) (即,y(t) = S(t) ),因此我们希望让\sum_{j=1}^{N_{C}}w_{j}a_{1,j} = 1 和 \sum_{j=1}^{N_{C}}w_{j}a_{2,j} = 0  。

        依我拙见,这里的w_{j} (权重)正是空间滤波器的体现。

解析方程的推出

        

SSVEP分析中的任务相关成分分析(TRCA)示意图

         在这里我们可以看到的stimulus duration (玫红色的部分),可以看成不同的trials。经过加权求和之后的y(t) 在不同的trials之间具有着较高的相似度。这个叠加的过程可以转变为矩阵的形式。Y = W^{T}X 。 问题转变为求解这个方程。理论上,在这个时候用协方差最大化和相关性最大化都可以求解这两个问题。

模型方程的求解

Correlaton Maximization(CorrMax)

        这个问题很容易就可以想到协方差最大化以及相关性最大化两个方法。在这里我们先来看看相关性最大化的方式。我们假设来自第k次trial的EEG信号以及其任务相关成分为x^{(k)}(t) 和 y^{(k)}(t)。我们计算来得到第k次trial的任务相关成分y^{(k)}(t) 与第l次trial的任务相关成分y^{(l)}(t)的pearson相关系数。如下:

C_{kl}=Corr(y^{(k)}(t),y^{(l)}(t))=\frac{\sum_{ij}^{}w_{i}w_{j}Cov(x^{(k)}(t),x^{(l)}(t))}{\sqrt{\sum_{ij}^{}w_{i}w_{j}Cov(x^{(k)}(t),x^{(k)}(t))}\sqrt{\sum_{ij}^{}}w_{i}w_{j}Cov(x^{(l)}(t),x^{(l)}(t))}

        其中,i 和 j 表示的是不同的通道。

         为了找到所有trial可能的组合,求其相关性系数之和最大的解。 

        \sum_{k,l=1 k\neq l}^{k}C_{kl} = \sum_{k,l=1 k\neq l}^{k}Corr(y^{(k)}(t),y^{(l)}(t))

=\sum_{k,l=1 k\neq l}^{k}\frac{\sum_{ij}^{}w_{i}w_{j}Corr(x^{(k)}(t),x^{(l)}(t))}{\sqrt{\sum_{ij}^{}w_{i}w_{j}Corr(x^{(k)}(t),x^{(k)}(t))}\sqrt{\sum_{ij}^{}w_{i}w_{j}Corr(x^{(l)}(t),x^{(l)}(t))}}

        这个方程就是传说中的CorrMax。由于我们采集到的EEG信号在零点处会发生漂移,并且由于设备等问题零漂问题各不相同。因此,我在使用CorrMax之前先对任务相关成分y(t)经行标准化处理。标准化之后的y(t) 的反差被归一化为1 。方程如下:

Var(y(t))=\sum_{i,j=1}^{N}w_{i}w_{j}Cov(x_{i}(t),x_{j}(t)) = W^{T}QW =1

        其中,(Q)_{ij}= Cov(x_{i}(t),x_{j}(t)), 按理来说这样就已经可以计算空间滤波器来得到最终的结果。但是按照这样来计算得到的不是一个封闭的解析解,而且只能得到一个任务相关成分y(t)

Covariance Maximization(CovMax)

        协方差最大化的计算方法与相关性最大化其实差不多,只是把pearson相关系数换成了协方差的公式。

C_{kl}^{'}=Cov(y^{(k)}(t),y^{(l)}(t))=\sum_{i,j=1}^{N}w_{i}w_{j}Cov(x_{i}^{(k)}(t),x_{j}^{(l)}(t))

\sum_{k\neq l;k,l=1}^{k}C_{kl}^{'}= \sum_{k\neq l;k,l=1}^{k}Cov(y^{(k)}(t), y^{(l)}(t))

=\sum_{k\neq l;k,l=1}^{k}\sum_{i,j=1}^{N}w_{i}w_{j}Cov(x_{i}^{(k)}(t),x_{j}^{(l)}(t))=W^{T}SW

        这就是CovMax,其中(S)_{ij}\equiv \sum_{k,l=1;k\neq l}^{k}Cov(x_{i}^{(k)}(t),x_{j}^{(l)}(t)) 。

求解空间滤波器

        在这里我们构造W^{'}=argmax\frac{W^{T}SW}{W^{T}QW} ,Q^{-1}S看为一个整体,刚好可以满足瑞利定理,利用Q^{-1}S的特征向量来求解.

References

[1]M. Nakanishi, Y. Wang, X. Chen, Y. -T. Wang, X. Gao, and T.-P. Jung, "Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis", IEEE Trans. Biomed. Eng, 65(1): 104-112, 2018.

[2]X. Chen, Y. Wang, M. Nakanishi, X. Gao, T. -P. Jung, S. Gao, "High-speed spelling with a non-invasive brain-computer interface", Proc. Natl. Acad. Sci. U.S.A, 112(44): E6058-E6067, 2015.

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值