任务相关成分分析TRCA与任务判别模式分析TDCA的推导比较

针对SSVEP-BCI的先进识别算法,本文主要推导了任务相关成分分析TRCA与任务判别模式分析TDCA的优化目标之间的关系。

背景知识

- 基于稳态视觉诱发电位(Steady-State Visual Evoked Potential, SSVEP)的脑-机接口系统(Brain-Computer Interface, BCI)具有高信噪比、高信息传输速率、用户所需训练时间少的优势,因此受到了广泛的关注。

- 2018年,Nakanishi M等人首次将任务相关成分算法(task-related component analysis, TRCA)应用到SSVEP信号的分类识别之中,基于该算法所设计的在线系统的信息传输率可以达到325.33±38.17bits/min[1]。

- 2021年,Liu等人首次利用了判别式模型来增强SSVEP-BCI系统的识别性能,提出了任务判别成分分析(Task-Discriminant Component Analysis,TDCA),性能显著优于TRCA[2]。

- 在文献[2]中的附录中,推导了TRCA生成式模型与TDCA判别式模型的区别,在本博客中,尝试依据文献中思路对推导过程进行细化,便于研究人员理解和学习。本人能力水平有限,若有问题和错误,敬请指正~

[1]Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using Task-Related Component Analysis [J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1): 104-112.

[2]Liu B, Chen X, Shi N, et al.Improving the performance of individually calibrated ssvep-bci by task- discriminant component analysis[J]. IEEE Transaction on Neural Systems Rehabilitation Engineering, 2021,29:1998-2007.

基本原理与假设


基于模型X=S+N,其中X为单试次的SSVEP观测信号,S为确定的任务信号、N为随机噪声
假设:S与N不相关,不同试次的N不相关,不同类别\mathbf{S}_{i}\mathbf{S}_{j}不相关

任务相关成分分析(TRCA)

TRCA的构建目标是使得相同任务下、各试次脑电信号的相关性最大,其优化目标可以表示为:

                  \max \frac{w^{T} S w}{w^{T} Q w} , S=\sum_{h_{1}, h_{2}=1, h_{1} \neq h_{2}}^{N_{t}} X^{\left(h_{1}\right)} X^{\left(h_{2}\right) T}, Q=\sum_{h=1}^{N_{t}} X^{(h)} X^{(h) T}

式中h1、h2代表不同的试次,Nt代表总试次数,X为单试次信号(维度:导联Nc*时间点Ns)
由假设可得:

             \begin{gathered} \boldsymbol{X}^{\left(h_{1}\right)} \boldsymbol{X}^{\left(h_{2}\right) \boldsymbol{T}}=\left(\boldsymbol{S}^{\left(h_{1}\right)}+\boldsymbol{N}^{\left(h_{1}\right)}\right)\left(\boldsymbol{S}^{\left(h_{2}\right)}+\boldsymbol{N}^{\left(h_{2}\right)}\right)^{T}=\boldsymbol{S}^{\left(h_{1}\right)} \boldsymbol{S}^{\left(h_{2}\right) \boldsymbol{T}} \\ \boldsymbol{X}^{(h)} \boldsymbol{X}^{(h) T}=\left(\boldsymbol{S}^{(h)}+\boldsymbol{N}^{(h)}\right)\left(\boldsymbol{S}^{(h)}+\boldsymbol{N}^{(h)}\right)^{T}=\boldsymbol{S}^{(h)} \boldsymbol{S}^{(h) T}+\boldsymbol{N}^{(h)} \boldsymbol{N}^{(h) T} \end{gathered}
因此,

                             \begin{aligned} &\boldsymbol{S}=\sum_{h_{1}, h_{2}=1}^{N_{t}} \boldsymbol{X}^{\left(h_{1}\right)} \boldsymbol{X}^{\left(h_{2}\right) T}-\sum_{h=1}^{N_{t}} \boldsymbol{X}^{(h)} \boldsymbol{X}^{(h) T}\\ &=\sum_{h_{1}, h_{2}=1}^{N_{t}} S^{\left(h_{1}\right)} S^{\left(h_{2}\right) T}-\sum_{h=1}^{N_{t}}\left(S^{(h)} S^{(h) T}+N^{(h)} N^{(h) T}\right)\\ &=2 \boldsymbol{S S}^{T}-\left(\boldsymbol{S S}^{T}+\boldsymbol{N} \boldsymbol{N}^{T}\right)=\boldsymbol{S S}^{T}-\boldsymbol{N}^{T}\\ &\boldsymbol{Q}=\sum_{h=1}^{N_{t}} \boldsymbol{X}^{(h)} \boldsymbol{X}^{(h) T}\\ &=\boldsymbol{S S}^{T}+\boldsymbol{N} \boldsymbol{N}^{T} \end{aligned}

即,原优化目标可以简化为:

               \begin{aligned} &\max \frac{\boldsymbol{w}^{T} S w}{w^{T} Q w}=\max \frac{w^{T}\left(S S^{T}-N N^{T}\right) w}{w^{T}\left(S S^{T}+N N^{T}\right) w}=\max \left(1-\frac{2 w^{T}\left(N N^{T}\right) w}{w^{T}\left(S S^{T}+N N^{T}\right) w}\right) \\ &=\max \frac{w^{T}\left(S S^{T}+N N^{T}\right) w}{w^{T} N N^{T} w}=\max \frac{w^{T} S S^{T} w}{w^{T} N N^{T} w} \end{aligned}
 

任务判别模式分析(TDCA)

TDCA的构建目标是最大化类间差异、最小化类内差异,其优化目标表示为:      \max \frac{w^{T} S_{b} w}{w^{T} S_{w} w} ,S_{b}=\sum_{i=1}^{N_{f}}\left(\overline{X_{i}}-\bar{X}\right)\left(\overline{X_{i}}-\bar{X}\right)^{T}, S_{w}=\sum_{i=1}^{N_{f}} \sum_{h=1}^{N_{t}}\left(X_{i}^{(h)}-X_{i}\right)\left(X_{i}^{(h)}-X_{i}\right)^{T}

其中,Nf代表总类别数
由假设可以推导出:

    \begin{aligned} &S_{b}=\sum_{i=1}^{N_{f}}\left(S_{i}-\frac{1}{N_{f}} \sum_{j=1}^{N_{f}} S_{j}\right)\left(S_{i}-\frac{1}{N_{f}} \sum_{j=1}^{N_{f}} S_{j}\right)^{T} \\ &=\sum_{i=1}^{N_{f}}\left[S_{i} S_{i}^{T}-\frac{1}{N_{f}}\left(\sum_{j=1}^{N_{f}} S_{j}\right) S_{i}^{T}-\frac{1}{N_{f}} S_{i}\left(\sum_{j=1}^{N_{f}} S_{j}^{T}\right)+\frac{1}{N_{f}^{2}}\left(\sum_{j=1}^{N_{f}} S_{j}\right)\left(\sum_{k=1}^{N_{f}} S_{k}^{T}\right)\right] \\ &=\sum_{i=1}^{N_{f}}\left[S_{i} S_{i}^{T}-\frac{2}{N_{f}} S_{i} S_{i}^{T}+\frac{1}{N_{f}^{2}} \sum_{j=1}^{N_{f}} S_{j} S_{j}^{T}\right] \\ &=\partial \sum_{i=1}^{N_{f}} S_{i} S_{i}^{T} \\ &S_{w}=\sum_{i=1}^{N_{f}} \sum_{h=1}^{N_{t}}\left(X_{i}^{(h)}-X_{i}\right)\left(X_{i}^{(h)}-X_{i}\right)^{T} \\ &=\sum_{i=1}^{N_{f}} \sum_{h=1}^{N_{t}} N_{i}^{(h)} N_{i}^{(h)^{T}} \\ &=\beta N N^{T} \end{aligned}

即有:

                                                \max \frac{w^{T} S_{b} w}{w^{T} S_{w} w}=\max \frac{w^{T} \sum_{i=1}^{N_{f}} S_{i} S_{i}^{T} w}{w^{T} N N^{T} w}

推导完成!

总结

观察化简后的优化目标可以发现:

1. TRCA最大化单一频率的信噪比,TDCA最大化所有频率的信噪比

2. TDCA为多类的空间滤波器提供了一种集成方式

联系我
- email: ruixin_luo@tju.edu.cn

- github:RuixinLuo's Blog

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值