MacOS系统下,利用Anaconda创建Python的虚拟环境,并在pycharm中配置该虚拟环境—图文教程

MacOS系统下,利用Anaconda创建Python的虚拟环境,并在pycharm中配置该虚拟环境—图文教程

欢迎学习交流!
邮箱: z…@1…6.com
网站: https://zephyrhours.github.io/

前言

Python 作为一种解释性语言,编程风格相对简单,且具有广泛的兼容性,尤其是随着计算机视觉和人工智能的兴起,近年来得到了越来越多科研人员和程序开发者的的喜欢和使用。它具有的丰富类型的安装包资源,这也是它成为当前最受欢迎的编程语言之一的因素。 Python的英文含义为蟒蛇的意思,本质上是指其具有较好的吞噬性,也就是其对不同格式语言的一个广泛兼容性。由于其对window用户安装极为不友好,很多开发包工具在国内环境下,很难安装,对于刚刚入手新语言的小白来说,环境配置确实是一个极为头疼的问题。

Anaconda 的英文含义是水蛇,蟒蛇的意思,它是一个非python官方开发的包含python基础开发环境的软件程序,并且适用于多个平台。它将一些基础的python开发环境内置在软件中,且Anaconda可以根据不同的项目需求,虚拟出不同的版本的python环境,免去了不同项目之间切换导致base环境混乱的痛苦,因此被广泛使用。

下面我们来讲一下macOS系统下利用anaconda创建虚拟环境的主要过程。

一、Anaconda软件的安装

macOS系统下的Anaconda 安装同window一样,可以通过Anaconda官方下载对应的软件安装包,然后根据UI界面提示完成安装即可,下面给出anaconda的官方网址,具体安装过程这里不在赘述。
Anacond 官方网址https://www.anaconda.com

二、Anaconda新建虚拟环境

Mac下面创建虚拟环境需要依靠系统终端完成,首先打开终端,然后直接键入如下命令,出现提示后,输入Y,点击回车确认即可:

conda create -n env_name python=3.xx

这里对该行代码进行简单的解释,具体如下:

  • env_name 为需要虚拟的环境名称,根据自己需要起一个自己喜欢的名称即可;
  • python=3.xx 为需要虚拟的环境,也就是python的版本,现在一般都使用3.x的版本,作者根据项目需求自行设置;

下面就是笔者此次创建的一个具体的命名为 pytorch_learning的虚拟项目环境,python版本为3.7,具体创建代码如下:

conda create -n pytorch_learning python=3.7

在这里插入图片描述

OK,至此环境就已经安装完成,下面就是对刚刚创建的环境进行激活,具体命令如下:

conda activate pytorch_learning

在这里插入图片描述
进入虚拟环境后,对该环境进行配置,使用conda命令进行相关库的安装,安装命令格式如下:

conda install xxx

下面以安装numpy为例,具体安装命令为:

conda install numpy

在这里插入图片描述
依次安装完成对应的安装包即可!

三、常用命令汇总

在Terminal中,可以使用clear命令清楚当前窗口中的显示,其他的关于anaconda虚拟环境操作的常用命令如下:

conda  deactivate

删除 pytorch_learning 环境

conda remove -n pytorch_learning --all

更新xxx安装包

conda updata xxx

卸载xxx安装包

conda uninstall xxx

四、Pycharm中配置环境

Pycharm是一个非常好用的python IDE编辑器,在macOS系统中的安装也非常简单,可以通过官网下载,安装过程中具有UI提示,此次不在赘述,Pycharm官网如下:

Pycharm官网:https://www.jetbrains.com/pycharm/

安装完成后,打开该软件,创建一个简单的.py文件,具体操作如下:
Setting—> Preferences
在这里插入图片描述

在左侧 Project:Python 中选中 Python Interpreter,然后点击右侧的小三角,选中 Show All;
在这里插入图片描述
进入Python Interpreters 控制面板后,选择左上角的 + 号,添加我们前面创建的虚拟环境;
在这里插入图片描述
如果我们不知道具体创建的虚拟环境路径在什么位置,可以在Terminal中重新激活该环境,然后输入命令找到具体的安装环境路径,具体命令如下:

conda activate pythorch_learning

注意这里需要分开输入两条命了,在激活环境后,输入下面命令,找到对应的python虚拟环境路径

where python

在这里插入图片描述
然后根据上面的环境路径,找到创建的虚拟环境 “pytorch_learning” ,在该路径的文件夹下面的 bin 文件夹中,找到 python3.7 文件,然后选中,将其添加到路径;
在这里插入图片描述
在这里插入图片描述
可以看到,此时在Python Interpreters 控制面板中已经出现了我们之前创建的虚拟环境;
在这里插入图片描述
在这里插入图片描述

依次点击OK和Apply按钮后,可以看到我最开始安装的numpy库和其依赖库环境,最后输入简单的测试命令进行测试即可,可以看到在Run窗口中,显示运行结果,同时也会显示创建的虚拟环境的路径。

在这里插入图片描述

OK,至此,整个在macOS下利用anaconda创建虚拟环境以及在Pycharm中配置的具体过程至此完成,其他的代码编写和环境搭建类似!

### 回答1: RTX 3060 是一款由 NVIDIA 推出的高性能显卡,用于计算机视觉和深度学习任务。PyTorch 是一种流行的深度学习框架,可以在 GPU 上高效地运行神经网络模型。 要在 RTX 3060 上安装 PyTorch,首先需要确保正确安装了适合该显卡的显卡驱动程序。可以在 NVIDIA 官方网站上下载安装最新的适用于 RTX 3060 的显卡驱动程序。 接下来,建议使用 Anaconda 或 Miniconda 来创建一个虚拟环境,这样可以隔离不同项目所使用的 Python 环境。可以使用以下命令创建一个虚拟环境: conda create -n your_environment_name python=3.8 然后,激活创建虚拟环境: conda activate your_environment_name 在激活的环境中,可以使用以下命令安装 PyTorch: conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch 上述命令安装适用于 CUDA 11.1 的 PyTorch 版本,确保与 RTX 3060 兼容。如果 CUDA 版本不同,请将上述命令中的 "cudatoolkit" 参数更改为相应的 CUDA 版本。 安装完成后,可以通过导入 PyTorch 检查是否成功安装,例如: import torch 如果没有报错,则表示已成功安装 PyTorch。 安装完 PyTorch 后,可以使用它来进行各种深度学习任务,如构建神经网络、训练模型和进行推理等。可以参考官方文档和教程来学习如何使用 PyTorch 进行深度学习任务。 总之,要在 RTX 3060 上安装 PyTorch,首先确保正确安装了适合该显卡的显卡驱动程序,然后使用 Anaconda 或 Miniconda 创建一个虚拟环境在其中安装 PyTorch。这样,您就可以开始使用 PyTorch 进行深度学习任务了。 ### 回答2: 要安装PyTorch,首先需要确保您的计算机满足以下要求: 1. 操作系统:Windows,Linux或Mac OS 2. Python版本:Python 3.6、3.7、3.8或3.9(推荐版本) 下面是一些步骤来安装PyTorch和相关依赖: 1. 打开终端(对于Windows用户,可以使用Anaconda Prompt) 2. 使用以下命令使用pip安装PyTorch: ``` pip install torch torchvision torchaudio ``` 这将自动安装与您的系统Python版本兼容的最新PyTorch版本。如果您希望安装特定版本,可以在上述命令中指定版本号。 3. 确认PyTorch安装成功后,您可以使用`import torch`来验证。 4. 如果您想要使用GPU加速,您还需要安装CUDA(Compute Unified Device Architecture)工具包。您可以从NVIDIA官方网站上下载按照说明安装适合您的显卡和操作系统的CUDA版本。 5. 安装CUDA后,您需要安装与CUDA兼容的PyTorch版本。如果您安装了CUDA 11.0,可以使用以下命令安装 ``` pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html ``` 在上述命令中,我们指定了与CUDA 11.0兼容的特定版本号。 完成上述步骤后,您就可以使用PyTorch进行深度学习任务了。请记住,在使用GPU加速时,确保您的电脑上安装了适当的GPU驱动程序,且您的代码正确设置以使用GPU。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

独不懂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值