-
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
-
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的
list
,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator
。 -
☆要创建一个
generator
,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator
:>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
创建L和g的区别仅在于最外层的
[]
和()
,L
是一个list
,而g
是一个generator
。 -
我们可以直接打印出list的每一个元素,但我们怎么打印出
generator
的每一个元素呢?如果要一个一个打印出来,可以通过
next()
函数获得generator
的下一个返回值:>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我们讲过,
generator
保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。 -
当然,上面这种不断调用
next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator
也是可迭代对象:>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
☆所以,我们创建了一个
generator
后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。 -
generator
非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。比如,著名的斐波拉契数列
(Fibonacci)
,除第一个和第二个数外,任意一个数都可由前两个数相加得到:1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前
N
个数:>>> fib(6) 1 1 2 3 5 8 'done'
仔细观察,可以看出,
fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator
。 -
也就是说,上面的函数和
generator
仅一步之遥。要把fib
函数变成generator
,只需要把print(b)
改为yield b
就可以了:def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return 'done'
☆这就是定义
generator
的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator
:>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
☆这里,最难理解的就是
generator
和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator
的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。 -
举个简单的例子,定义一个
generator
,依次返回数字1,3,5
:def odd(): print('step 1') yield 1 print('step 2') yield(3) print('step 3') yield(5)
调用该
generator
时,首先要生成一个generator
对象,然后用next()
函数不断获得下一个返回值:>>> o = odd() >>> next(o) step 1 1 >>> next(o) step 2 3 >>> next(o) step 3 5 >>> next(o) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
可以看到,
odd
不是普通函数,而是generator
,在执行过程中,遇到yield
就中断,下次又继续执行。执行3次yield
后,已经没有yield
可以执行了,所以,第4次调用next(o)
就报错。 -
回到fib的例子,我们在循环过程中不断调用
yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成
generator
后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:>>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8
-
但是用
for
循环调用generator
时,发现拿不到generator
的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
关于如何捕获错误,后面的错误处理还会详细讲解。
-
小结
generator是非常强大的工具,在Python
中,可以简单地把列表生成式改成generator
,也可以通过函数实现复杂逻辑的generator
。☆使用
()
可以方便的将一个生成list表达式修改为一个generator
☆也可以使用
yield
关键字,自自定义一个generator
☆要理解
generator
的工作原理,它是在for
循环的过程中不断计算出下一个元素,并在适当的条件结束for
循环。对于函数改成的generator
来说,遇到return
语句或者执行到函数体最后一行语句,就是结束generator
的指令,for
循环随之结束。请注意区分普通函数和
generator
函数,普通函数调用直接返回结果:>>> r = abs(6) >>> r 6
generator
函数的“调用”实际返回一个generator
对象:>>> g = fib(6) >>> g <generator object fib at 0x1022ef948>
15.Python高级特性 生成器 详解
最新推荐文章于 2024-05-25 07:22:31 发布
生成器在Python中是一种节约内存的迭代方式,它允许在循环中动态生成元素,而非一次性创建整个列表。从列表生成式简单转换成生成器,或是通过函数配合`yield`关键字自定义生成器,可以实现更复杂的算法。生成器在执行时遇到`yield`会中断,下次调用时从上次中断处继续,直到没有`yield`语句结束。斐波那契数列是生成器应用的一个实例。使用生成器可以避免大量内存消耗,尤其是在处理大规模数据时。
摘要由CSDN通过智能技术生成