- 程序能一次写完并正常运行的概率很小,基本不超过1%。总会有各种各样的
bug
需要修正。有的bug
很简单,看看错误信息就知道,有的bug
很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug
。
- 第一种方法简单直接粗暴有效,就是用
print()
把可能有问题的变量打印出来看看:
执行后在输出中查找打印的变量值:def foo(s): n = int(s) print('>>> n = %d' % n) return 10 / n def main(): foo('0') main()
用$ python err.py >>> n = 0 Traceback (most recent call last): ... ZeroDivisionError: integer division or modulo by zero
print()
最大的坏处是将来还得删掉它,想想程序里到处都是print()
,运行结果也会包含很多垃圾信息。所以,我们又有第二种方法。
assert
-
断言
凡是用print()来辅助查看的地方,都可以用断言(assert)来替代:def foo(s): n = int(s) assert n != 0, 'n is zero!' return 10 / n def main(): foo('0')
assert
的意思是,表达式n != 0
应该是True
,否则,根据程序运行的逻辑,后面的代码肯定会出错。如果断言失败,
assert
语句本身就会抛出AssertionError
:$ python err.py Traceback (most recent call last): ... AssertionError: n is zero!
-
程序中如果到处充斥着
assert
,和print()
相比也好不到哪去。不过,启动Python解释器时可以用-O
参数来关闭assert
:$ python -O err.py Traceback (most recent call last): ... ZeroDivisionError: division by zero
注意:断言的开关“-O”
是英文大写字母O
,不是数字0
。
关闭后,你可以把所有的assert
语句当成pass
来看。
logging
-
把
print()
替换为logging
是第3种方式,和assert
比,logging
不会抛出错误,而且可以输出到文件:import logging s = '0' n = int(s) logging.info('n = %d' % n) print(10 / n) logging.info()就可以输出一段文本。运行,发现除了ZeroDivisionError,没有任何信息。怎么回事?
别急,在import logging之后添加一行配置再试试:
import logging logging.basicConfig(level=logging.INFO)
看到输出了:
$ python err.py INFO:root:n = 0 Traceback (most recent call last): File "err.py", line 8, in <module> print(10 / n) ZeroDivisionError: division by zero
这就是
logging
的好处,它允许你指定记录信息的级别,有debug,info,warning,error
等几个级别,当我们指定level=INFO
时,logging.debug
就不起作用了。同理,指定level=WARNING
后,debug
和info
就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。logging
的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console
和文件。
pdb
-
第4种方式是启动Python的调试器
pdb
,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:# err.py s = '0' n = int(s) print(10 / n)
然后启动:
$ python -m pdb err.py > /Users/michael/Github/learn-python3/samples/debug/err.py(2)<module>() -> s = '0'
以参数
-m pdb
启动后,pdb
定位到下一步要执行的代码-> s = '0'
。输入命令l来查看代码:(Pdb) l 1 # err.py 2 -> s = '0' 3 n = int(s) 4 print(10 / n) ``` 输入命令`n`可以单步执行代码: ```python (Pdb) n > /Users/michael/Github/learn-python3/samples/debug/err.py(3)<module>() -> n = int(s) (Pdb) n > /Users/michael/Github/learn-python3/samples/debug/err.py(4)<module>() -> print(10 / n)
任何时候都可以输入命令p 变量名来查看变量:
(Pdb) p s '0' (Pdb) p n 0
输入命令q结束调试,退出程序:
(Pdb) q
这种通过pdb在命令行调试的方法理论上是万能的,但实在是太麻烦了,如果有一千行代码,要运行到第999行得敲多少命令啊。还好,我们还有另一种调试方法。pdb.set_trace()
这个方法也是用pdb
,但是不需要单步执行,我们只需要import pdb
,然后,在可能出错的地方放一个pdb.set_trace()
,就可以设置一个断点:# err.py import pdb s = '0' n = int(s) pdb.set_trace() # 运行到这里会自动暂停 print(10 / n)
运行代码,程序会自动在
pdb.set_trace()
暂停并进入pdb
调试环境,可以用命令p
查看变量,或者用命令c
继续运行:$ python err.py > /Users/michael/Github/learn-python3/samples/debug/err.py(7)<module>() -> print(10 / n) (Pdb) p n 0 (Pdb) c Traceback (most recent call last): File "err.py", line 7, in <module> print(10 / n) ZeroDivisionError: division by zero
这个方式比直接启动pdb单步调试效率要高很多,但也高不到哪去。
IDE
-
如果要比较爽地设置断点、单步执行,就需要一个支持调试功能的IDE。目前比较好的Python IDE有:
Visual Studio Code:需要安装Python插件。
另外,Eclipse加上pydev插件也可以调试Python程序。