【数据结构】队列的顺序表实现&&收尾栈和队列

在这里插入图片描述每一个不曾起舞的日子,都是对生命的辜负。

1. 队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头

  • 队列与栈的区别是出的顺序恰好相反

在这里插入图片描述

2. 队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,需要将后面的元素覆盖到前面,复杂度为O(N),效率会比较低。

在这里插入图片描述

结构体的封装:

typedef int QDataType;
typedef struct QueueNode//定义节点
{
    QDataType data;
    struct QueueNode* next;
}QNode;

typedef struct Queue//通过定义此结构体记录队列的头、尾、大小
{
    QNode* head;
    QNode* tail;
    int size;
}Queue;

Queue.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>


typedef int QDataType;
typedef struct QueueNode
{
	QDataType* data;
	struct Queue* next;
}QNode;

typedef struct Queue
{
	QNode* head;
	QNode* tail;
	int size;
}Queue;

void QueueInit(Queue* pq);// 初始化队列
void QueueDestory(Queue* pq);// 销毁队列
void QueuePush(Queue* pq,QDataType x);// 队尾入队列
void QueuePop(Queue* pq);// 队头出队列
QDataType QueueFront(Queue* pq);// 获取队列头部元素
QDataType QueueBack(Queue* pq);// 获取队列队尾元素
bool QueueEmpty(Queue* pq);// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueSize(Queue* pq);// 获取队列中有效元素个数

Queue.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"


void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
	pq->size = 0;
}
void QueueDestory(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* del = cur;
		cur = cur->next;
		free(del);
	}
	pq->head = pq->tail = NULL;
}
void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	else
	{
		newnode->data = x;
		newnode->next = NULL;
	}
	if (pq->tail == NULL)
	{
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = pq->tail->next;
	}
	pq->size++;
}
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));
	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* del = pq->head;
		pq->head = pq->head->next;
		free(del);
	}
	pq->size--;
}
QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->head == NULL && pq->tail == NULL;
}
int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}

Test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
void TestQueue()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
	printf("%d ", QueueFront(&q));
	QueuePop(&q);
	printf("%d ", QueueFront(&q));
	QueuePop(&q);

	QueuePush(&q, 4);
	QueuePush(&q, 5);
	QueuePush(&q, 6);
	printf("\n");
	while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}printf("\n");

}
int main()
{
	TestQueue();
	return 0;
}

在这里插入图片描述

3. 栈和队列LeetCode.oj

由于此语言为C语言,因此我们在实现oj之前需要将之前的代码复制进去,否则没有对应封装好的函数

1. 有效的括号

20. 有效的括号

给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。

示例 1:

输入:s = "()"
输出:true

示例 2:

输入:s = "()[]{}"
输出:true

示例 3:

输入:s = "(]"
输出:false

示例 4:

输入:s = "([)]"
输出:false

示例 5:

输入:s = "{[]}"
输出:true

提示:

  • 1 <= s.length <= 104
  • s 仅由括号 '()[]{}' 组成

思路:这是一道利用栈解决的问题,即下一个进来的如果是左括号则储存,是右括号则看与栈顶的元素是否匹配,若匹配,栈顶元素弹出,继续执行,若不匹配,则返回false。需要注意的是,若所有的元素都分配完毕,此时栈仍不为空,这说明不匹配,返回false.

typedef int STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;

void StackInit(ST* ps);
void StackDestory(ST* ps);
void StackPush(ST* ps, STDataType x);
void StackPop(ST* ps);

STDataType StackTop(ST* ps);
bool StackEmpty(ST* ps);
int StackSize(ST* ps);


void StackInit(ST* ps)
{
	ps->a = NULL;
	ps->top = ps->capacity = 0;
}


void StackDestory(ST* ps)
{
	assert(ps);
	free(ps->a);
	ps->a = NULL;
	ps->top = ps->capacity = 0;
}
void StackPush(ST* ps, STDataType x)
{
	assert(ps);
	if (ps->top == ps->capacity)
	{
		int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
		STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		ps->a = tmp;
		ps->capacity = newcapacity;
	}
	ps->a[ps->top] = x;
	ps->top++;

}
void StackPop(ST* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));
	--ps->top;
}

STDataType StackTop(ST* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));
	return ps->a[ps->top - 1];
}
bool StackEmpty(ST* ps)
{
	assert(ps);
	return ps->top == 0;
}
int StackSize(ST* ps)
{
	assert(ps);
	return ps->top;
}


bool isValid(char * s){
    ST st;
   StackInit(&st);
    while(*s)
    {
        if(*s == '('||*s == '['||*s=='{')
        {
            StackPush(&st,*s);
        }
        else
        {
            if(StackEmpty(&st))
              return false;
            STDataType obj = StackTop(&st);
            
            if((obj == '{' && *s == '}')||
               (obj == '[' && *s == ']')||
               (obj == '(' && *s == ')'))
            {
                StackPop(&st);
            }
            else
            {
                
                return false;
            }

        }
        s++;
    }
    if(st.top!=0)
      return false;
   return true;

}

2.用队列实现栈

225. 用队列实现栈

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(pushtoppopempty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。
  • int pop() 移除并返回栈顶元素。
  • int top() 返回栈顶元素。
  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false

注意:

  • 你只能使用队列的基本操作 —— 也就是 push to backpeek/pop from frontsizeis empty 这些操作。
  • 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

示例:

输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]

解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False

提示:

  • 1 <= x <= 9
  • 最多调用100pushpoptopempty
  • 每次调用 poptop 都保证栈不为空

**进阶:**你能否仅用一个队列来实现栈。

思路:很明显的是,栈的特点是先进后出,队列的特点是先进先出,那么如何用先进先出的队列实现先进后出的栈呢?这就不仅仅依靠一个队列了,而是两个队列元素之间的相互转换,如:q1 : 1 、2、3、4、5

q2:NULL;那么如何将其Top时变成5、4、3、2、1?

这就需要画图去思考:

在这里插入图片描述

按正常逻辑,对于队列应该是1->2->3->4->5的顺序弹出队列,但要其相反,我们就要:将q1的前4个元素移到q2,再弹出q1的时候就是最后进的元素了。

在这里插入图片描述

于是这个步骤就可以反复执行,直到两个队列均变成空。

代码实现:

typedef int QDataType;
typedef struct QueueNode
{
    QDataType* data;
    struct Queue* next;
}QNode;

typedef struct Queue
{
    QNode* head;
    QNode* tail;
    int size;
}Queue;

void QueueInit(Queue* pq);// 初始化队列
void QueueDestory(Queue* pq);// 销毁队列
void QueuePush(Queue* pq,QDataType x);// 队尾入队列
void QueuePop(Queue* pq);// 队头出队列
QDataType QueueFront(Queue* pq);// 获取队列头部元素
QDataType QueueBack(Queue* pq);// 获取队列队尾元素
bool QueueEmpty(Queue* pq);// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueSize(Queue* pq);// 获取队列中有效元素个数



void QueueInit(Queue* pq)
{
    assert(pq);
    pq->head = pq->tail = NULL;
    pq->size = 0;
}
void QueueDestory(Queue* pq)
{
    assert(pq);
    QNode* cur = pq->head;
    while (cur)
    {
        QNode* del = cur;
        cur = cur->next;
        free(del);
    }
    pq->head = pq->tail = NULL;
}
void QueuePush(Queue* pq, QDataType x)
{
    assert(pq);
    QNode* newnode = (QNode*)malloc(sizeof(QNode));
    if (newnode == NULL)
    {
        perror("malloc fail");
        exit(-1);
    }
    else
    {
        newnode->data = x;
        newnode->next = NULL;
    }
    if (pq->tail == NULL)
    {
        pq->head = pq->tail = newnode;
    }
    else
    {
        pq->tail->next = newnode;
        pq->tail = pq->tail->next;
    }
    pq->size++;
}
void QueuePop(Queue* pq)
{
    assert(pq);
    assert(!QueueEmpty(pq));
    if (pq->head->next == NULL)
    {
        free(pq->head);
        pq->head = pq->tail = NULL;
    }
    else
    {
        QNode* del = pq->head;
        pq->head = pq->head->next;
        free(del);
    }
    pq->size--;
}
QDataType QueueFront(Queue* pq)
{
    assert(pq);
    assert(!QueueEmpty(pq));

    return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
    assert(pq);
    assert(!QueueEmpty(pq));

    return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
    assert(pq);
    return pq->head == NULL && pq->tail == NULL;
}
int QueueSize(Queue* pq)
{
    assert(pq);
    return pq->size;
}


typedef struct {
    Queue q1;
    Queue q2;
} MyStack;


MyStack* myStackCreate() {
    MyStack* obj = (MyStack*)malloc(sizeof(MyStack));
    QueueInit(&obj->q1);
    QueueInit(&obj->q2);
    return obj;
}

void myStackPush(MyStack* obj, int x) {
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}

int myStackPop(MyStack* obj) {
    Queue* empty = &obj->q1;
    Queue* nonempty = &obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        nonempty = &obj->q1;
        empty = &obj->q2;
    }

    while(QueueSize(nonempty)>1)
    {
        QueuePush(empty,QueueFront(nonempty));
        QueuePop(nonempty);
    }
    int top = QueueFront(nonempty);
    QueuePop(nonempty);
    return top;

}

int myStackTop(MyStack* obj) {
    if(!QueueEmpty(&obj->q1))
    {
        return QueueBack(&obj->q1);
    }
    else
    {
        return QueueBack(&obj->q2);
    }
}

bool myStackEmpty(MyStack* obj) {
    return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}

void myStackFree(MyStack* obj) {
    QueueDestory(&obj->q1);
    QueueDestory(&obj->q2);
    free(obj);
}

/**
 * Your MyStack struct will be instantiated and called as such:
 * MyStack* obj = myStackCreate();
 * myStackPush(obj, x);

 * int param_2 = myStackPop(obj);

 * int param_3 = myStackTop(obj);

 * bool param_4 = myStackEmpty(obj);

 * myStackFree(obj);
*/

3. 用栈实现队列

232. 用栈实现队列

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(pushpoppeekempty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明:

  • 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

示例 1:

输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]

解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

提示:

  • 1 <= x <= 9
  • 最多调用 100pushpoppeekempty
  • 假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)

进阶:

  • 你能否实现每个操作均摊时间复杂度为 O(1) 的队列?换句话说,执行 n 个操作的总时间复杂度为 O(n) ,即使其中一个操作可能花费较长时间。

思路:对于这道题,思想与上道题一样,只是变化了对象,用两个先进后出实现先进先出,但值得注意的是, 由于栈先进后出的特点,经过调换,没必要像上道题一样来回反复移动,而是定义一个专门用来push的,另一个专门用来Top的:

在这里插入图片描述

输出的时候将pushST的全部导入popST:

在这里插入图片描述

这样就可以实现队列的先进先出的原则。

代码:

typedef int STDataType;
typedef struct Stack
{
    STDataType* a;
    int top;
    int capacity;
}ST;

void StackInit(ST* ps);//ʼ
void StackDestory(ST* ps);//
void StackPush(ST* ps, STDataType x);
void StackPop(ST* ps);

STDataType StackTop(ST* ps);
bool StackEmpty(ST* ps);
int StackSize(ST* ps);


void StackInit(ST* ps)
{
    ps->a = NULL;
    ps->top = ps->capacity = 0;
}


void StackDestory(ST* ps)
{
    assert(ps);
    free(ps->a);
    ps->a = NULL;
    ps->top = ps->capacity = 0;
}
void StackPush(ST* ps, STDataType x)
{
    if (ps->top == ps->capacity)
    {
        int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
        STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);
        if (tmp == NULL)
        {
            perror("realloc fail");
            exit(-1);
        }
        ps->a = tmp;
        ps->capacity = newcapacity;
    }
    ps->a[ps->top] = x;
    ps->top++;

}
void StackPop(ST* ps)
{
    assert(ps);
    assert(!StackEmpty(ps));
    --ps->top;
}

STDataType StackTop(ST* ps)
{
    assert(ps);
    assert(!StackEmpty(ps));
    return ps->a[ps->top - 1];
}
bool StackEmpty(ST* ps)
{
    assert(ps);
    return ps->top == 0;
}
int StackSize(ST* ps)
{
    assert(ps);
    return ps->top;
}

typedef struct{
    ST pushST;
    ST popST;
} MyQueue;


MyQueue* myQueueCreate() {
    MyQueue* obj = (MyQueue*)malloc(sizeof(MyQueue));
    StackInit(&obj->pushST);
    StackInit(&obj->popST);
    return obj;
}

void myQueuePush(MyQueue* obj, int x) {
    StackPush(&obj->pushST,x);
}

int myQueuePop(MyQueue* obj) {
    if(StackEmpty(&obj->popST))
    {
        while(!StackEmpty(&obj->pushST))
        {
            StackPush(&obj->popST,StackTop(&obj->pushST));
            StackPop(&obj->pushST);
        }
    }

    int front = StackTop(&obj->popST);
    StackPop(&obj->popST);
    return front;
}

int myQueuePeek(MyQueue* obj) {
    if(StackEmpty(&obj->popST))
    {
        while(!StackEmpty(&obj->pushST))
        {
            StackPush(&obj->popST,StackTop(&obj->pushST));
            StackPop(&obj->pushST);
        }
    }
    return StackTop(&obj->popST);
}

bool myQueueEmpty(MyQueue* obj) {
    return StackEmpty(&obj->pushST)&&StackEmpty(&obj->popST);
}

void myQueueFree(MyQueue* obj) {
    StackDestory(&obj->pushST);
    StackDestory(&obj->popST);
    free(obj);
}

/**
 * Your MyQueue struct will be instantiated and called as such:
 * MyQueue* obj = myQueueCreate();
 * myQueuePush(obj, x);

 * int param_2 = myQueuePop(obj);

 * int param_3 = myQueuePeek(obj);

 * bool param_4 = myQueueEmpty(obj);

 * myQueueFree(obj);
*/

4.设计循环队列

622. 设计循环队列

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

示例:

MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3
circularQueue.enQueue(1);  // 返回 true
circularQueue.enQueue(2);  // 返回 true
circularQueue.enQueue(3);  // 返回 true
circularQueue.enQueue(4);  // 返回 false,队列已满
circularQueue.Rear();  // 返回 3
circularQueue.isFull();  // 返回 true
circularQueue.deQueue();  // 返回 true
circularQueue.enQueue(4);  // 返回 true
circularQueue.Rear();  // 返回 4

提示:

  • 所有的值都在 0 至 1000 的范围内;
  • 操作数将在 1 至 1000 的范围内;
  • 请不要使用内置的队列库。

对于此题,是队列,但是并不像前几道题一样,需要我们将之前的函数代码放到里面,而是需要自己去实现。上述已经说过,队列既可以由链表实现,也可以由数组实现,而在上述中的创建空间的接口中用的是链表实现,对于此题,如果用链表实现的话,则需要不断地开辟新节点来构造此空间,而用数组一步malloc就可以创建,相比较,前者较为麻烦,因此,在这里,我们采用数组。

既然是循环数组,我们有两种方式判断其是否满或者空,一是创建时用一个size来记录数量,二是利用循环的特性,设置两个下标,head代表头,tail代表尾,为了凸显循环的特性,我们采用后者。那么,如何利用这两个下标指针判断其是否为空为满呢?

这时大概率会想到:当head与tail重合的时候,是否就可以看成满了呢?好,那顺着这个来,当我们定义head=tail=0的时候,内部没有元素,head与tail都在起始位置,即head = tail = 0,然而此时却是空,这代表着我们之前构建的大思路错误了吗?当然不是,大家也会猜到,如果都是错误的,何必这么大费周章呢?既然大思路没错,我们就想一想如何改善这个判断空和满的条件,这里也就不卖关子了,可以进行如下改善:让malloc出来的空间比需要的空间多一个,但这最后一个并不存储数据,恰恰作为一个条件,当尾指针走到这里,就说明满,当尾指针与头指针重合就可以代表空 ,但是利用数组的话,如何让其尾指针走到头的位置呢?这里采用的是取模,即tail%N。

举个例子:当我们需要构建四个空间放置元素,此时我们应多开辟一个空间即N = 5

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

此时,数组的空间已满,由于head和tail都是数组下标,默认从0开始,而tail到图中的位置时tail恰好等于4,可以看出,当(tail+1)%N == head时,就代表满。

接下来看看如何判空:

在这里插入图片描述

由于是循环队列,每次tail改变我们都需要让tail = tail%N,目的是让其的指向可以循环,通过上图可以看出head == tail时即可判空,(或者tail%N == head%N)。

那么,最关键的接口我们的逻辑已经推演完成,接下来看看代码吧!(注:这里的头和尾分别用的是front和back)

typedef struct {
    int* a;
    int front;
    int back;
    int N;

} MyCircularQueue;


MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    obj->a = (int*)malloc(sizeof(int)*(k+1));
    obj->front = obj->back = 0;
    obj->N = k+1;

    return obj;
}

bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    return obj->back == obj->front;
}

bool myCircularQueueIsFull(MyCircularQueue* obj) {
    return (obj->back+1) % obj->N == obj->front;
}

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    if(myCircularQueueIsFull(obj))
    return false;

    obj->a[obj->back] = value;
    obj->back++;
    obj->back %= obj->N;
    return true;
}

bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
    return false;

    obj->front++;
    obj->front %=obj->N;
    return true;
}

int myCircularQueueFront(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
    return -1;

    return obj->a[obj->front];
}

int myCircularQueueRear(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
    return -1;

    return obj->a[(obj->back-1+obj->N)%obj->N];
}




void myCircularQueueFree(MyCircularQueue* obj) {
    free(obj->a);
    free(obj);
}

/**
 * Your MyCircularQueue struct will be instantiated and called as such:
 * MyCircularQueue* obj = myCircularQueueCreate(k);
 * bool param_1 = myCircularQueueEnQueue(obj, value);
 
 * bool param_2 = myCircularQueueDeQueue(obj);
 
 * int param_3 = myCircularQueueFront(obj);
 
 * int param_4 = myCircularQueueRear(obj);
 
 * bool param_5 = myCircularQueueIsEmpty(obj);
 
 * bool param_6 = myCircularQueueIsFull(obj);
 
 * myCircularQueueFree(obj);
*/

4. 总结

到这里,栈和队列的讲解基本上就完成了,但这里由于我们用的C语言实现,接口都需要自己提供,因此只是让大家了解以及能够面对一些oj题,更加复杂的内容将会在C++里一并实现。

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天都要进步呀~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值