划分数
今天真是DP的一天
.
题目:
有N个无区别的东西,要分为不超过M份,共有几种分法
这道题用常规的打表(前面几个的和)没法做出来。
我们来试试用DP
首先我们定dp[i][j]是表示n=i,m=j的答案。简单分析一下题目我们可以知道:dp[i][j]=dp[i][j-1]+X,其中X为将i恰好分为j份的分法。何如来得到X呢?
n个物品恰好分为m分,我们可以看做先拿出m个物品,每个物品为一份,再将剩下的物品任意数量地加到任意一份上,其中(将剩下的物品任意数量地加到任意一份上)这一部分不就是划分数吗,只是我们的总数由n变为了n-m,所以dp可以写为:dp[i][j]=dp[i][j-1]+dp[i-j][j]。
但是,我们这样写是默认了i>j,但在第二项中i-j和j的大小关系我们没法确定,所以在DP时,我们要顺便计算i<j的情况,这种情况直接dp[i][j]=dp[i][j-1]即可
综上所述
dp[0][0]=1;
for(int i=0;i<=n;i++)//从0开始
{
for(int j=1;j<=m;j++)
{
if(j>i)
dp[i][j]=dp[i][j-1];
else
dp[i][j]=dp[i][j-1]+dp[i-j][j];
}
}
cout << dp[n][m] << endl ;
如果有的题目需要我们打印刚到将n分为m份的分法数,打印dp[n-m][m]即可