gcd最大公因数和最小公倍数算法(基础)

最大公因数的三种算法

第一种

运算速度:一般,a、b都可以是0

int gcd(int a,int b)
{
    int r;
    while(b>0)
    {
        r=a%b;
        a=b;
        b=r;
    }
    return a;
}

第二种

三目运算符(常用)
运算速度:较快,a、b都可以是0

int gcd(int a,int b)
{
    return b>0? gcd(b,a%b):a;
}

第三种

位运算
运算速度:较快,a、b不能为0

int gcd(int a,int b)
{
    while(b^=a^=b^=a%=b);
    return a;
}

(b^=a^=b^=a%=b)相当于(b^=(a^=(b^=(a%=b))))相当于a%=b,b^=a,a^=b,b^=a
其中b^=a,a^=b,b^=a相当于swap(a,b),详见卡常技巧第3条。
所以(b^=a^=b^=a%=b)等价于a%=b,swap(a,b),这就是gcd函数的一般写法。

最小公倍数

最小公倍数只需要知道一个公式就好了

最小公倍数=两整数的乘积÷最大公约数

结合上面的 gcd 函数就可以很快求最小公倍数了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值