最大公约数GCD、最小公倍数LCM

最大公约数GCD

最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个

更相减损法

gcd(a,b)
假设a>b,则gcd(a,b)=gcd(b,a-b)、gcd(a,a)=a

递归版

//更相减损法(递归)
int gcd(int a,int b) {
	if(a==b) return a;
	return a>b?gcd(a-b,b):gcd(b-a,a);
}

循环版

int gcd(int a,int b) {
	while(a-b) {
		int c=a-b;
		if(c>0) a=c;
		else {
			b=a;
			a=-c;
		}
	}
	return a;
}

辗转相除法

gcd(a,b)=gcd(b,a%b)
gcd(a,a)=a

递归版

int gcd(int a,int b) {
	if(!b) return a;
	return gcd(b,a%b);
}

循环版

int gcd(int a,int b) {
	while(b) {
		int c=a%b;
		a=b;
		b=c;
	}
	return a;
}

Stein算法

证明见https://blog.csdn.net/d52370/article/details/88577978

abgcd(a,b) (a>b)
奇数奇数gcd((a+b)/2,(a-b)/2)
奇数偶数gcd(a,b/2)
偶数奇数gcd(a/2,b) 或 gcd(b,a/2)
偶数偶数2*gcd(a/2,b/2)

递归版

int stein(int a,int b) {
	if(a==0) return b;
	if(b==0) return a;
	if(a<b) {
		a^=b;
		b^=a;
		a^=b;
	}
	if(a&1) { //a为奇数
		if(b&1) { //a为奇数,b为奇数
			return stein1((a+b)>>1,(a-b)>>1);
		} else { //a为奇数,b为奇数
			return stein1(a,b>>1);
		}
	} else { //a为偶数
		if(b&1) { //a为偶数,b为奇数
			return stein1(a>>1,b);
		} else {//a为偶数,b为偶数
			return stein1(a>>1,b>>1)<<1;
		}
	}
}

循环版

int stein(int a,int b){
	int factor=0;
	if(a<b){
		a^=b;
		b^=a;
		a^=b;
	}
	if(!b) return 0;
	while(a!=b){
		if(a&1){
			if(b&1){//奇+奇
				b=(a-b)>>1;
				a-=b;
			}else{//奇+偶
				b>>=1;
			}
		}else{
			if(b&1){//偶+奇
				a>>=1;
				if(a<b){
					a^=b;
					b^=a;
					a^=b;
				}
			}else{//偶+偶
				factor++;
				a>>=1;
				b>>=1;
			}
		}
	}
	return (a<<factor);
}

最小公倍数LCM

两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。

int lcm(int a,int b){
	return a*b/gcd(a,b);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值