双相情感障碍与重度抑郁症中抑郁的独特神经解剖学基础

目录

1. 引言

2. 材料与方法

3.结果

4. 讨论

5. 结论


简要总结

抑郁症是一种常见的精神障碍,双相抑郁(Bipolar Depression,dBD)单相抑郁(Major Depressive Disorder,dMDD)在症状上存在重叠,导致诊断困难。误诊可能导致治疗不当,例如将dBD误诊为dMDD并使用抗抑郁药物,可能诱发躁狂发作或治疗抵抗。目前尚无可靠的神经解剖学标记物可用于区分这两种抑郁症。本研究旨在通过体素基础形态测量(Voxel-Based Morphometry,VBM)支持向量机(Support Vector Machine,SVM)算法,识别dBD和dMDD的独特神经解剖模式。


 

摘要

本研究旨在通过多中心研究,利用VBM和SVM算法,识别dBD和dMDD患者的独特神经解剖模式。研究纳入1531名参与者,包括dBD患者、dMDD患者和健康对照者。VBM分析显示,dBD患者相较于dMDD患者在双侧背外侧前额叶皮层(Dorsolateral Prefrontal Cortex,DLPFC)和前扣带回皮层(Anterior Cingulate Cortex,ACC)的灰质体积显著减少,而两种抑郁症患者与健康对照相比,均表现出右ACC和左额下回的小灰质体积。SVM分析在日本样本中对dBD和dMDD的分类准确率为63.4%,敏感性为69.7%,特异性为46.4%。独立样本验证表明,这些结果在美国样本中部分得到支持。研究结果表明,DLPFC和ACC的灰质体积差异是区分dBD和dMDD的核心特征,为未来开发神经影像学标记物提供了新证据。


 

关键词:cingulate(扣带回)、frontal gyrus(额叶回)、support vector machine(支持向量机)、unipolar depression(单相抑郁)、VBM(体素基础形态测量)。

1. 引言

抑郁症是一种常见的精神障碍,其特征是抑郁情绪、兴趣或愉悦感的丧失、内疚感或自尊心低下、注意力减退以及睡眠和食欲的改变,严重时可能导致自杀相关行为。抑郁症通常是长期的或反复发作的,严重影响个体在工作或学校的能力,并对社会产生重大影响。然而,准确诊断包括dBD和dMDD在内的抑郁症并不是一件简单的事。在一项针对600名双相障碍患者的调查中,69%的患者报告曾被误诊,其中60%被错误地诊断为单相抑郁障碍。在另一项研究中,145名最初由初级保健医生或心理治疗师诊断为双相障碍的患者中,有56%后来被诊断为单相抑郁障碍。双相障碍急性抑郁发作与单相抑郁障碍的鉴别诊断是一个重要的临床问题,它们的症状标准相同,但药物治疗策略却大不相同。心境稳定剂(如锂盐、抗癫痫药物和非典型抗精神病药物)是dBD的首选药物,而抗抑郁药物是dMDD的首选治疗方案。然而,如果dBD患者因误诊为dMDD而被给予抗抑郁药物而未使用任何心境稳定剂,这可能会引发从抑郁相到躁狂相的转换。没有经过心境稳定剂治疗的dBD患者如果被给予抗抑郁药物,可能会面临快速循环的风险,可能导致医源性的不良结果。尽管临床医生和研究人员一直在寻找用于区分这两种障碍的生物标志物,但目前尚无已知的生物标志物。

神经影像学是识别特定于dBD或dMDD的神经解剖学生物标志物的有力工具,已有大量的荟萃分析研究间接比较了MDD或BD患者与健康受试者的脑结构差异。尽管有几项结构神经影像学研究使用全脑分析技术直接比较了BD患者和MDD患者的脑结构体积差异,但样本量较小,结果尚无定论。

SVM是一种模式识别分类器,因其灵活性和分类能力而在多个研究领域和行业中得到应用。SVM分析也已用于神经影像学研究,以对心境障碍患者和健康受试者进行分类以及作为预测治疗反应的工具。然而,据研究所知,尚未有研究在大样本中对dBD和dMDD患者的神经解剖学特征进行分类。本研究的目的是利用VBM和SVM,识别dBD或dMDD患者的独特神经解剖模式。

研究样本来自日本多个地点和机构。为了使结果更具普遍性,研究在美国的一个独立样本中对磁共振成像进行了进一步分析。假设涉及情绪处理回路和BD及MDD病理生理学的前额叶和边缘区域的异常灰质体积(Gray Matter Volume,GMV)将有助于在VBM中区分这两种抑郁症类型,并在SVM中以高准确率对它们进行分类。前额叶-边缘网络涉及情绪处理和认知调节,包括注意力和行为控制,这些区域还在调节对压力的情绪、行为、内分泌和先天免疫反应中起关键作用,其他脑区在心境障碍的情绪处理中几乎没有证据表明其参与,所以前额叶-边缘网络中的区域可能用于区分dBD和dMDD的临床特征相关。先前研究表明,发病年龄、双相障碍家族史和多次抑郁发作是与内侧颞叶、皮质下和前额叶区域的GMV减少相关的鉴别特征。躁狂症状在BD中出现,而在MDD中不出现,一项研究显示躁狂发作次数与额下回GMV减少之间存在关联。尽管VBM的荟萃分析研究揭示了与健康受试者相比,BD和MDD患者的前额叶-边缘网络的类似区域(包括额下回)的GMV较小,但研究假设在BD和MDD的类似抑郁状态下会观察到不同的结构异常。研究进一步假设这些结果将在来自美国的独立第二队列中得到确认。

2. 材料与方法

参与者

日本样本包括来自3所大学医院、2所精神科医院和1所神经科学研究所的596名单相抑郁患者、158名双相抑郁患者和777名健康参与者(表1)。参与者的详细信息总结在补充方法和补充表2中。在日本样本中,各组之间在性别分布、效应量和颅内体积上存在显著差异,但在年龄上没有显著差异、效应量相对较小。美国样本包括来自德克萨斯州圣安东尼奥一所大学医院的43名单相抑郁患者、36名双相抑郁患者和132名健康参与者(表1)。各组之间在性别分布、颅内体积和年龄上没有显著差异。本研究的所有参与者均为右利手。在日本样本中,汉密尔顿抑郁量表的平均得分为17.6(6.00)(n = 370),平均病程为9.18(8.71)年(n = 375),抑郁发作次数、躁狂发作次数和总发作次数的平均值分别为2.52(3.60)(n = 288)、3.00(8.81)(n = 48)和3.10(6.20)(n = 288)。这些指标仅在部分中心进行了收集,而在其他中心则通过临床评估了抑郁的严重程度。本研究获得了每个参与地点的机构审查委员会的批准,并在向参与者提供研究的完整描述后,获得了每位参与者的书面知情同意。

表1参与者的人口统计学和临床特征

磁共振成像

脑部图像使用8台磁共振成像(Magnetic Resonance Imaging,MRI)扫描仪采集。MRI采集的详细信息总结在补充方法中。磁共振成像在每个地点手动检查质量,并评估异常发现,然后在山口大学重新检查,以确保图像质量符合分析要求。

图像分析

所有磁共振成像汇总至山口大学。图像预处理使用VBM8工具箱,后续分析使用SPM8,所有分析在MATLAB R2015a环境下进行。所有原始图像手动对齐至前联合-后联合线,分割以去除非脑组织并导入VBM8算法可使用的格式,分割后的图像在MNI空间中进行标准化,并使用8mm高斯滤波器进行平滑处理。脑区通过WFU PickAtlas 3.04(http://fmri.wfubmc.edu/software/PickAtlas)进行自动解剖标记。

VBM统计分析

研究使用一般线性模型分析灰质图像。将感兴趣区域设置在前额叶和边缘系统结构中,这些区域涉及双相障碍和抑郁症的病理生理学,还包括由WFU PickAtlas 3.04定义的前额叶、皮下和内侧颞叶区域内的34个情绪处理区域。对应VBM统计分析,首先,评估扫描仪效应,使用健康受试者作为先前研究中的方法,以消除可能影响诊断的掩盖效应。在SPM8中应用方差分析(ANOVA)模型,以灰质图像作为因变量,扫描仪作为8个水平的自变量,年龄、性别和颅内体积(ICV)作为协变量。结果被处理为一个排他性掩膜图像,以消除后续VBM统计分析中的扫描仪效应。然后,应用一个包含3个诊断水平(dMDD、dBD和健康受试者)的ANOVA模型,以年龄、性别和ICV作为协变量,扫描仪效应图像作为排他性掩膜。在SPM8中进行体素水平的F检验和T检验,诊断的阈值为P < 0.05,之后进行FWE校正。最后,使用get_totals脚本(http://www0.cs.ucl.ac.uk/staff/G.Ridgway/)计算这些分析中显著区域的灰质体积,在这部分没有在VBM分析中应用包含扫描仪作为协变量的方差分析模型,因为初步分析显示,这种模型与样本中不包含扫描仪作为协变量的模型结果相似。因此,得出结论,统计模型不适合在本研究中用于控制磁共振成像数据分析中的扫描仪效应。关于在诊断之间具有显著差异的区域灰质体积,在SPSS Statistics 20 for Windows中进行了偏相关分析,控制年龄、性别和ICV,临床变量包括发病年龄、病程、抑郁发作次数、躁狂发作次数和总发作次数以及药物负荷(将抗抑郁药物、抗精神病药物和心境稳定剂的使用数量称为“药物负荷”),经过Bonferroni校正后显示了结果。

SVM分析

SVM使用从VBM分析中获得的ROI中的133133个体素信号对每个受试者的磁共振成像进行分类。SVM根据体素信号、年龄、性别和扫描仪信息对诊断进行分类。研究在R版本3.3.1(平台:×86_64-redhat-linux-gnu,运行于:CentOS release 6.8)下使用“e1071 1.6.7”包进行SVM分析。SVM可以通过两个类别的超平面将线性可分的数据集分为两类。

特征提取

由于体素数据特征过多,其中一些可能冗余,进行了两级特征提取。一级基于领域知识——专注于VBM分析中的34个特定神经解剖区域,另一级使用主成分分析(PCA)进行特征提取,通过保留90%的方差。

性能评估

为了评估泛化能力,所有样本随机分为训练样本和测试样本(补充图1a)。研究使用整个数据集的50%用于训练,剩余50%用于测试。训练数据用于设计SVM,包括通过主成分分析(Principal Component Analysis,PCA)对每个区域进行特征提取,然后应用于测试数据。研究还将年龄、性别和扫描仪信息作为输入预测因子。此外,仅使用从体素数据中提取的特征、年龄和性别设计SVM,不包括扫描仪信息,以评估扫描仪信息对SVM结果的影响。通过测试数据的分类来评估SVM的分类性能。这些程序重复10次,使用不同的训练和测试条件进行数据分离。性能评估包括准确率%、敏感性%、特异性%和诊断比值比。研究还检查了每个区域SVM权重向量w的平均系数在10次试验中的表现。
 

VBM分析

   在美国样本中设置了一个包含3个诊断水平(dMDD、dBD和健康受试者)的ANOVA模型,并在SPM8中将年龄、性别和ICV作为协变量。然后,分析了dBD、dMDD和健康受试者在前额叶-边缘结构中的诊断差异,分别使用和不使用从日本样本分析中获得的显著对比掩膜图像。

SVM分析

    使用在日本样本中训练的SVM对美国数据进行分类性能评估,以评估泛化能力。

3.结果

VBM

在分析中发现扫描仪对结果有显著影响,尤其是在右侧杏仁核/左侧丘脑和左侧中额回区域。这些区域受扫描仪影响的面积占所有感兴趣区域(ROI)的约62.6%。研究将这些区域作为掩膜,以排除扫描仪效应对后续分析的干扰。与单相抑郁障碍患者相比,双相抑郁障碍患者的DLPFC和ACC的灰质体积显著减少。具体而言,右侧DLPFC(体素坐标:x=30, y=33, z=48;体素数k=886;t值=6.60;校正后P值=4.80×10⁻⁷)和左侧DLPFC(x=-25.5, y=49.5, z=31.5;k=75;t=5.46;校正后P值=2.78×10⁻⁴)的灰质体积减少显著。此外,右侧ACC(x=3, y=49.5, z=21;k=55;t=5.58;校正后P值=1.55×10⁻⁴)和左侧上内侧额回(x=-4.5, y=49.5, z=24;k=98;t=5.14;校正后P值<0.001)也表现出灰质体积减少。这些差异在不同扫描仪之间具有显著性和较大的效应量,表明这些区域的灰质体积差异在dBD和dMDD之间是可靠的。

dBD患者与健康对照相比,右侧ACC和中额回(x=3, y=49.5, z=19.5;k=12318;t=11.5;校正后P值<0.001)以及左侧额下回三角部(x=-39, y=10.5, z=25.5;k=44;t=4.9;校正后P值=0.003)的灰质体积显著减少。dMDD患者与健康对照相比,右侧中额回和内侧额回(x=34.5, y=49, z=28.5;k=12841;t=9.9;校正后P值<0.001)、左侧额下回眶部和三角部以及左侧岛叶(x=-37.5, y=28.5, z=33;k=348;t=9.7;校正后P值<0.001)以及左侧中额回(x=-24, y=-3, z=48;k=156;t=4.8;校正后P值=0.005)的灰质体积显著减少。

为了确保扫描仪效应不影响主要分析结果,研究团队进行了额外的全因子模型分析,纳入诊断(患者和健康对照)和扫描仪(8个水平)作为因素。结果显示,主要发现区域的灰质体积差异在诊断之间具有更大的效应量,而扫描仪效应或诊断与扫描仪的交互作用对结果的影响较小。

SVM

SVM在日本样本中对dBD和dMDD的分类准确率为63.4%,敏感性为69.7%,特异性为46.4%,诊断比值比(DOR)为2.00。双侧中额回、上额回和左侧额下回三角部(这些区域在VBM分析中也显示出显著差异)对分类贡献最大。该分类结果具有统计学意义

dBD患者与健康对照的分类准确率为88.1%,敏感性为92.1%,特异性为73.4%,DOR为32.20。dMDD患者与健康对照的分类准确率为75.9%,敏感性为78.1%,特异性为72.9%,DOR为9.60。

独立样本的泛化能力

在美国独立样本中,dBD患者相较于dMDD患者在右DLPFC的灰质体积显著减少(x=25.5, y=51, z=34.5;k=64;t=3.36;校正后P值=0.03)。dBD患者与健康对照相比,在左侧内侧眶额回和上内侧额回区域(x=12, y=55.5, z=-1.5;k=387;t=3.54;未校正P值=0.0002)的灰质体积减少,但未达到多重比较校正后的显著性水平。dMDD患者与健康对照之间在美国样本的VBM分析中未发现显著的区域灰质体积差异。

在美国样本中,SVM对dBD和dMDD的分类能力较日本样本低,具体表现为:dBD与dMDD的分类准确率为53.2%,特异性为58.1%,敏感性为47.2%,DOR为1.24;dBD与健康对照的分类准确率为58.3%,特异性为60.6%,敏感性为50.0%,DOR为1.54;dMDD与健康对照的分类准确率为54.3%,特异性为56.1%,敏感性为48.8%,DOR为1.22。

为了探究美国样本分类能力较低的原因,研究团队对美国样本进行了与日本样本相同的交叉验证。结果显示,美国样本的分类准确率低于日本样本。尽管如此,美国样本和日本样本在区域SVM权重之间的相关性显著(r=0.72,P<0.001;r=0.68,P<0.001;r=0.73,P<0.001),表明两个样本在区域SVM权重的排名上表现出相似的趋势,且在所有诊断中,双侧上额回和中额回的SVM权重最大。

图1基于体素的形态测量学中不同诊断的灰质差异。

4. 讨论


 

DLPFC和ACC在心境障碍中的作用

DLPFC和ACC参与情绪和认知处理,是心境障碍病理生理学的关键区域。既往研究表明,与健康对照相比,BD患者在ACC、岛叶和颞极区域的灰质体积减少,而MDD患者在ACC和右DLPFC的灰质体积减少。既往研究还表明,BD的严重结果(包括自杀企图、中年发病和多次躁狂发作)与DLPFC的灰质体积减少有关。多项神经心理学研究表明,与重度抑郁症(MDD)患者相比,双相情感障碍(BD)患者在执行功能、注意力和记忆任务中的表现更差。这些认知功能的损伤可能与背外侧前额叶皮层(DLPFC)和前扣带皮层(ACC)的功能异常密切相关。一项荟萃分析研究显示,dBD和dMDD患者的认知表现基于认知测量相似,但DLPFC和ACC的灰质体积差异可能有助于解释观察到的认知缺陷差异。未来的研究需要评估dBD和dMDD患者的神经认知功能,并结合相关脑区的灰质体积,以区分dBD和dMDD的功能和结构脑病理生理学。对于心境障碍的生物学治疗,静息态网络(包括DLPFC)可预测难治性MDD患者的电休克治疗(ECT)结果。DLPFC也是重复经颅磁刺激(rTMS)的主要刺激部位,基线时前额叶区域的血流可能作为患者对rTMS反应的预测因子。一项磁共振波谱学综述显示,BD患者的DLPFC和ACC存在异常的神经化学功能。此外,神经病理学研究表明,BD和MDD患者的DLPFC脑组织的神经元和胶质细胞密度减少。最近的一项VBM荟萃分析研究显示,与BD患者相比,MDD患者的右DLPFC灰质体积减少。研究者认为,前额叶灰质体积的不同模式可能有助于区分这两种障碍。然而,本研究结果与该研究相反,这可能是由于两项研究的方法学差异。例如,前者是一项荟萃分析,使用BD和MDD的出版研究进行间接比较,以评估效应量和各种情绪状态(缓解期、抑郁期和躁狂期),而本研究是直接比较磁共振成像数据,使用VBM和SVM分析,并且仅涉及一种情绪状态(抑郁期)。关于MDD和BD的直接比较,既往研究部分同意本研究结果,但存在不一致,这可能是由于方法学差异。未来,对BD和MDD患者在不同情绪状态(抑郁、躁狂或缓解期)下的灰质体积差异进行纵向研究,可能会解决这一问题。

图2:用于跨诊断分类的支持向量机(SVM)权重的区域散点图及其平均值

第一队列结果的泛化

独立第二队列的VBM和SVM结果部分支持第一队列的结果,尽管对两种障碍的分类准确率低于第一队列。这些较弱的VBM和SVM准确率可能部分解释了第二队列中诊断间前额叶-边缘结构的灰质体积差异较小。第二队列的VBM分析未显示任何区域的灰质体积在诊断间存在显著差异。第二队列的SVM交叉验证分析显示,与第一队列的交叉验证分析相比,诊断分类的准确率显著降低。这些发现表明,第二队列的MRI数据本身在诊断间的分类和区分上存在困难。然而,第一和第二队列的区域SVM权重排名显示出非常相似的模式,表明双侧DLPFC在中额回对分类的贡献强大且可靠。

图3:独立第二队列中基于体素的形态计量学分析结果。

局限性

本研究存在一些局限性。首先,研究讨论了VBM结果中的多扫描仪效应。VBM分析中的输出差异被认为反映了不同成像协议导致的组织分类差异。本研究中扫描仪效应涉及约60%的感兴趣区域(ROI),与既往研究中扫描仪效应涉及的区域一致。研究创建了一个包含扫描仪作为协变量的组间比较分析设计,并评估了健康受试者中扫描仪效应,如既往研究那样。然后,研究将这些效应作为掩膜模板,用于跨诊断组的比较,以消除扫描仪效应对结果的影响。还比较了每个扫描仪的区域灰质体积,对于中等和大的效应量,显示出每个扫描仪的诊断差异,结果表明每个扫描仪的诊断间灰质体积分布相似。事后VBM分析的结果也表明,第二次分析中诊断与扫描仪之间存在显著交互作用的皮下和内侧颞叶区域的灰质体积,并未与第一次分析中dBD和dMDD之间存在显著差异的灰质体积区域重叠。

此外,关于第一次分析中存在显著诊断差异的区域,诊断的效应量大于扫描仪或诊断与扫描仪交互作用的效应量。这些事后VBM分析的结果表明,第一次VBM分析的发现相对扫描仪的差异较小。SVM分析也支持VBM结果,显示出在这些诊断比较(dBD与dMDD、dBD与健康、dMDD与健康)中,包含和不包含扫描仪特征的模型结果非常相似。这些发现至少间接支持了假设,即具有显著意义的区域灰质体积对诊断间的差异比扫描仪间的差异影响更大;然而,研究不能排除扫描仪效应可能掩盖了诊断间灰质体积差异的可能性。尽管MRI图像采集时间较长,没有跟踪MRI扫描仪的软件升级信息,这可能对结果有一定影响。部分体积效应、图像强度非均匀性、MRI装置的电子噪声和信号噪声的差异可能对结果有一定影响。例如,使用phantom评估扫描仪效应将是当前情境下的首选,未来可能需要更多研究来评估多中心采集质量。研究未发现不同诊断组在海马和杏仁核灰质体积上的显著差异。尽管诊断组别对这些区域的灰质体积有显著主效应,但多扫描仪间的变异性可能掩盖了这一结果。既往关于BD和MDD的多中心神经影像学荟萃分析研究观察到内侧颞叶区域的类似阴性结果,而少数其他MDD的荟萃分析则得出了阳性结果。未来,需要进行没有扫描仪方差效应的多中心MRI研究,以解决这一问题。

第三,由于研究试图解决dBD和dMDD患者大脑之间的形态学差异,并尽可能使用较大的样本量,对于日本人群,没有控制参与者的跨站点人口统计学特征:年龄或性别分布、每种障碍的受试者数量、诊断方法、每种障碍的亚型诊断,或健康受试者的精神病家族史。此外,在收集和汇总每个站点的数据时,没有获得所有患者的完整背景信息,包括病程、药物负荷和抑郁严重程度。因此,没有将抑郁评分纳入VBM分析的统计模型中,抑郁的严重程度可能对VBM的结果有一定影响。尽管大约90%的患者在研究参与时正在服用精神药物,但关于药物类型、剂量或使用持续时间的信息不可用。在dBD患者中,许多人使用心境稳定剂,其中一些使用抗抑郁药。在dMDD患者中,许多人使用抗抑郁药,其中一些使用心境稳定剂。这些变量可能会影响大脑体积的结果。一些研究表明,抗抑郁药的使用会增加MDD患者的DLPFC灰质体积,锂盐会影响皮质灰质密度。另一项研究表明,长期锂盐治疗与企图自杀相关的相同区域的灰质体积增加有关。一项综述表明,服用药物的BD患者在结构和功能神经影像学测量上没有显著的精神药物效应。因此,可能受到与调查的患者背景信息相关因素的影响。

第四,研究使用训练数据对SVM分析的最优参数C进行了10折交叉验证,使用了5个候选参数。研究可能通过使用网格搜索图方法找到更优的参数。使用的5个典型参数候选在本研究中经过探索性测试后被确认为适当(数据未显示)。研究使用PCA对每个区域进行特征提取,保留了90%的方差,这没有通过交叉验证进行优化。首先通过保留95%的方差进行这种特征提取分析,结果与保留90%方差的原始分析略有不同(数据未显示)。因此,尽管更好的参数优化可能会提高SVM的分类性能,但研究目前的结果仍然是有效的。第五,研究发现美国样本的SVM交叉验证显示出非常低的敏感性(dBD与健康为0.18,dMDD与健康为0.13)。这可能是由于患者与健康受试者之间的样本量严重不平衡(36例dBD、43例dMDD与132例健康受试者)。未来需要在美国样本中进行三组诊断数量相当的研究,以进一步验证结果。最后,平均SVM权重的结果表明,日本和美国的结果之间显示出相似的分布(图4)。似乎较大的权重简单地出现在较大的区域中,但事实可能并非如此简单。由于SVM分析使用了从VBM分析中获得的体素信号强度,一个区域中的较大权重意味着更大的平均体素信号和更多的体素数量。例如,它可能表明左右两侧的ROI(应该包含相似数量的体素)位于不同的位置(补充表5)。因此,尽管较大的区域倾向于显示出较大的权重,但在解释图4的结果时,应考虑每个体素的信号强度。

图4:第一和第二队列中支持向量机权重平均值之间的比较散点图

5. 结论

本研究的结果为dBD和dMDD的DLPFC和ACC结构灰质体积减少提供了新的证据,表明这种减少是两种障碍的共享病理生理学特征,并且某些区域的更严重异常可用于识别两种障碍之间的独特神经解剖学底物。这些发现表明,DLPFC和ACC的灰质体积是共享和独特病理生理学的核心特征,并有助于阐明双相障碍/单相抑郁障碍连续体内的抑郁症神经机制。

精读分享

概念相关

双相抑郁障碍(dBD):双相障碍(BD)的抑郁发作期,表现为持续的抑郁情绪、兴趣丧失等。

单相抑郁障碍(dMDD):即抑郁症(MDD),以抑郁情绪为主要特征,不伴有躁狂发作。

灰质体积(GMV):大脑中神经元细胞体的密度和分布,反映脑区的结构完整性。

体素基础形态测量(VBM):一种基于MRI图像的分析方法,用于评估大脑灰质和白质的体积变化。

支持向量机(SVM):一种机器学习算法,用于分类和回归分析,通过寻找最优超平面实现数据分类。

神经解剖学底物:指与特定疾病相关的脑结构变化,可作为疾病的生物标记物。

优势:

多中心研究设计:研究涉及日本和美国的多个中心,样本量大,增加了结果的可靠性和普适性。

独立样本验证:通过美国样本对日本样本的结果进行验证,增强了研究结论的泛化能力。

结合VBM和SVM:利用VBM识别灰质体积差异,并通过SVM进行分类,提高了诊断的准确性。

识别独特神经解剖学底物:首次在大样本中识别出dBD和dMDD的独特神经解剖学底物,为未来诊断提供了潜在的生物标记物。

主体内容

研究背景:dBD和dMDD的诊断存在重叠,导致临床误诊率高。识别两者之间的神经解剖学差异对于改善诊断和治疗至关重要。

研究方法:

l参与者:包括dBD、dMDD患者和健康对照,共1531名参与者。

l影像采集:使用8台MRI扫描仪收集脑部图像。

lVBM分析:评估灰质体积差异,重点关注前额叶和边缘系统。

lSVM分析:基于VBM结果,使用SVM对dBD和dMDD进行分类。

研究结果:

lVBM结果:dBD患者在双侧DLPFC和ACC的灰质体积显著减少。

lSVM结果:分类准确率达到63.4%,敏感性69.7%,特异性46.4%。

独立样本验证:美国样本部分支持日本样本的结果,尤其是在右DLPFC区域。

结论

本研究提供了新的证据,表明DLPFC和ACC的灰质体积减少是dBD和dMDD的共享病理生理学特征,且某些区域的更严重异常可用于识别两种障碍之间的独特神经解剖学底物。这些发现有助于阐明双相障碍/单相抑郁障碍连续体内的抑郁症神经机制,并为未来开发区分这两种障碍的神经影像学生物标记物提供了重要依据。

参考文献:

Koji Matsuo, Kenichiro Harada, Yusuke Fujita, Yasumasa Okamoto, Miho Ota, Hisashi Narita, Benson Mwangi, Carlos A Gutierrez, Go Okada, Masahiro Takamura, Hirotaka Yamagata, Ichiro Kusumi, Hiroshi Kunugi, Takeshi Inoue, Jair C Soares, Shigeto Yamawaki, Yoshifumi Watanabe, Distinctive Neuroanatomical Substrates for Depression in Bipolar Disorder versus Major Depressive Disorder, Cerebral Cortex, Volume 29, Issue 1, January 2019, Pages 202–214, https://doi.org/10.1093/cercor/bhx319

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值