目录
1.软件界面
2.工具包功能简介
PAGANI Toolkit(Parallel Graph-theoretical ANalysIs Toolkit)是一个用于大脑网络大数据的并行图论分析工具包。PAGANI Toolkit基于中央处理单元(CPU)和图形处理单元(GPU)的混合框架开发,以提供快速和可扩展的计算解决方案。工具包提供图形用户界面,使用户能够方便地自定义计算参数,而无需复杂的计算环境配置。用户可以根据需要自定义图论计算中的参数,以适应不同的大脑网络分析需求。PAGANI Toolkit提供了一系列图论分析方法,用于大脑网络大数据的分析。以下是该工具包提供的主要分析方法:
(1)全局网络属性(Global Network Properties):
聚类系数(Clustering Coefficient, Cp)
归一化聚类系数(Normalized Clustering Coefficient, Gamma)
特征路径长度(Characteristic Path Length, Lp)
归一化特征长度(Normalized Characteristic Length, Lambda)
小世界特性(Small-Worldness, Sigma)
模块性(Modularity)
(2)模块检测(Module Detection):
谱分割方法(Spectral Partition Method)
基于启发式的Louvain模块检测算法
(3)节点中心性度量(Nodal Centrality Metrics):
节点度(Nodal Degree)
节点效率(Nodal Efficiency)
节点介数中心性(Betweenness Centrality, BC,仅限于二元网络)
节点特征向量中心性(Eigenvector Centrality, EC)
节点参与系数(Participation Coefficient, PC)
(4)网络构建(Network Construction):
支持构建基于体素的功能脑网络(voxel-wise functional brain networks)
(5)数据格式(Data Format):
使用压缩稀疏行(Compressed Sparse Row, CSR)格式来表示网络
(6)网络随机化(Network Randomization):
通过随机重连过程生成随机网络
(7)图形用户界面(Graphical User Interface, GUI):
提供GUI以方便用户自定义网络分析中的参数设置
(8)并行计算(Parallel Computing):
利用CPU-GPU混合框架实现并行计算,提高计算效率
这些方法使得PAGANI Toolkit能够快速计算大型脑网络的全局和节点级别的拓扑特性,并且具有用户友好的界面和较低的计算环境要求。
3.软件安装注意事项
根据PAGANI Toolkit手册内容,以下是软件安装时需要注意的事项:
1. 操作系统要求:
PAGANI Toolkit的新版本需要64位Windows操作系统。支持的操作系统包括Windows 7、Windows 8和Windows 10,以及Linux系统(如CentOS 6.5)。
2. 硬件要求:需要一台支持CUDA的NVIDIA GPU。至少需要NVIDIA GTX 580 GPU或NVIDIA GeForce GTX 850M,并配备CUDA Toolkit v7.0。
3. CUDA Toolkit:如果使用旧版本(parabna),需要安装最新的CUDA Toolkit。可以从NVIDIA官网下载CUDA Toolkit:[CUDA Toolkit for Windows](http://www.nvidia.com/content/cuda/cuda-downloads.html) 或 [CUDA Toolkit for Linux](http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html)。
4. CUDA入门指南:为了开始使用CUDA,建议遵循NVIDIA提供的CUDA入门指南:
[CUDA Getting Started Guide for Microsoft Windows](http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-microsoft-windows/index.html) [CUDA Getting Started Guide for Linux](http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html)
5. 图形用户界面(GUI):PAGANI Toolkit提供了图形用户界面,以便研究人员快速开始并提供更好的用户体验。用户需要在GUI顶部指定工作目录和掩码文件。
6. 文件格式和类型:所有输入成像文件(静息fMRI)应直接放置在工作目录下,以NIfTI格式保存。掩码文件也应为NIfTI格式,数据类型可以是float或unsigned char。
7. 网络构建和分析:网络构建的输入应为预处理的fMRI数据。用户可以根据是否考虑连接强度选择二元或加权网络类型进行进一步分析。
8. 算法加速:PAGANI Toolkit通过GPU加速了Pearson相关性计算、APSP和betweenness、eigenvector-based模块检测等算法。
9. 兼容性:尽管提供了GUI,但命令行操作的指令仍然保留,以兼容不同的偏好。
10. 文件和目录结构:确保所有NII文件都是小端格式(little-endian),并且数据类型为32位实数(单精度浮点数)。
这是一个完整的软件包,带有 fire-new GUI 和更新的命令集有三个文件夹:'software package'、'doc' 和 'src'。“软件包”包含未安装的 PAGANI-VBN 软件的绿色版本。用户可以通过单击“PAGANI-X”直接启动软件。X' 图标。'src' 文件夹包含软件算法部分的源代码。'doc' 是这个 PAGANI-VBN 平台的详细手册。遵循这些注意事项可以帮助确保PAGANI Toolkit的顺利安装和使用。如果在安装过程中遇到任何问题,可以参考手册中的详细说明或联系我们。
参考文献:
Du, H., et al (2018).PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data. Human Brain Mapping 39.5, DOI: 10.1002/hbm.23996