通过绘制疾病的空间图来了解疾病与人类和自然环境之间的关系,这一想法在城市应用中有着丰富的历史。据联合国统计,全球超过一半的人口居住在城市,预计到2050年,这一比例将达到十分之七。城市化对公共卫生,包括心理健康问题,有着重大影响。尽管过去十年的大量研究强调了环境因素对心理健康的影响,但关于土地覆盖和城市化等物理环境的全球适用数据仍然有限。要了解城市生活如何影响心理健康,需要同时测量多种环境因素与精神疾病的症状相关联,同时考虑潜在的大脑结构和功能。到目前为止,大多数研究仅孤立地评估了个别城市环境因素与个别精神疾病症状的联系。
2024年10月30日,佐治亚州立大学神经影像和数据科学转化研究中心的Ran Goldblatt博士及研究团队在Nature Mental Health上发表了题为“Functional dysconnectivity of visual and somatomotor networks yields a simple and robust biomarker for psychosis”的文章,研究人员使用了青少年大脑认知发展研究的数据集,将卫星和大脑成像数据联系起来,以确定环境因素如何影响年轻人的心理健康、认知和大脑发育。
研究人员结合青少年大脑认知发展(Adolescent Brain Cognitive Development, ABCD)数据集和Xu及其同事最初开发的“城市卫星”(UrbanSat)数据集,分析了美国21个城市11,800名儿童的数据,通过将静息态磁共振成像(functional Magnetic Resonance Imaging,fMRI)成像与卫星数据(包括研究参与者的位置)联系起来,研究人员能够更有力地确定物理环境如何影响9至10岁儿童的认知和心理健康结果。
纳入UrbanSat指标的覆盖美国48个连续州的六幅土地利用/覆盖图的空间分布及特征
研究评估了社会经济地位(家庭收入:过去12个月的家庭总收入,范围0-10)和父母教育水平(从未上学至博士学位,范围0-21)与UrbanSat指标之间的相关性。具体研究的指标有:归一化建筑指数(Normalized Difference Built-up Index,NDBI)、夜间灯光(Nighttime Light,NTL)、林地和归一化植被指数(Normalized Difference Vegetation Index,NDVI)以及归一化水体指数(Normalized Difference Water Index,NDWI)。
纳入城市卫星指标的NTL和人口地图的空间分布和特征
结果表明,父母教育水平与NDBI、NTL和人口数量呈显著负相关,与NDVI呈正相关。家庭收入与UrbanSat指标的相关性非常相似,且与NDBI的相关性最为显著。因此,由于存在多重共线性,我们分别考察了不包含和包含社会经济地位协变量的两组线性混合效应模型,并将其应用于UrbanSat相关性分析。在不考虑社会经济地位的情况下,UrbanSat指标(除林地外)与认知能力和默认模式网络(Default Mode Network,DMN)聚类相关,NTL还与问题行为相关。在考虑社会经济地位的情况下,NDBI与认知总分显著相关,NTL与DMN聚类系数显著相关,且与认知得分相关(呈显著性趋势)。对UrbanSat与社会经济地位之间共线性有限的子样本进行的进一步分析也证实了UrbanSat指标与认知能力之间的相关性。
分析中纳入的卫星变量和DMN成分的摘要
研究着眼于土地的使用方式,包括光污染和某个地区的建筑物数量等因素,以此来了解该地区的社会和经济状况。研究人员发现,夜间光线较多、建筑物较多的地方往往父母的教育水平和家庭收入较低,而树木和植物较多的地区则与较高的教育和收入有关。“通过对绿地、城市地区和水体密度等环境因素进行精确、客观的测量,ABCD数据集可以丰富我们对物理环境如何通过各种复杂的生理、心理和社会过程影响大脑活动的理解。在这项新研究中,我们看到独特的环境和物理特征可能会影响大脑灰质和白质的范围和模式及其功能性网络连接。
参考文献
Goldblatt, R., Holz, N., Tate, G.W. et al. Linking neuroimaging and mental health data from the ABCD Study to UrbanSat measurements of macro environmental factors. Nat. Mental Health 2, 1285–1297 (2024). https://doi.org/10.1038/s44220-024-00318-x