Hadoop start-dfs.sh启动后jps没显示进程,已解决!!!

困扰我很多天的jps进程不显示问题终于解决了!!!

问题如下:

配置完Hadoop文件之后启动Hadoop显示启动成功,但是jps查看不到进程。如图所示(jps应启动 namenode datanode secondary namenodes 三个进程,但是一个也没有)
在这里插入图片描述

解决方法:

之前也在网上搜索了很多方法但是对于我的虚拟机来说都不适用。为此我还重新创建了一个虚拟机,仍然出现同样的问题,一度怀疑虚拟机有问题,原来还是自己的问题!
是我Hadoop里的core-site.xml文件里面的配置出现了问题。

1.修改core-site.xml文件

错误的是
在这里插入图片描述
修改之后是
在这里插入图片描述

2.删除运行过的未成功的目录,再重新创建

(根据自己hdfs-site.xml文件中配置的文件路径创建新目录)
在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

3.格式化:hdfs namenode -format

在这里插入图片描述

4.start-dfs.sh启动hadoop并jps查看进程

结果展示
在这里插入图片描述
终于成功啦!

PS:

查看IP: ip a
查看虚拟机名字:cat etc/hostname

在这里插入图片描述
其中容易出错的是value里面的nmjtest(虚拟机名字)
原因:
这个创建虚拟机之初系统/etc/hosts里面的默认ip是127.0.1.1 名字是localhost
在这里插入图片描述后面经过配置换位置等其他因素导致虚拟机IP改变时需要修改为指定IP。例
在这里插入图片描述

此时的IP名字都已改变
因而Hadoop中core-site.xml内容也要改变。

<think>嗯,我现在遇到了一个Hadoop集群的问题,需要仔细分析一下。用户说在启动start-dfs.sh之后,用jps查看有DataNode进程,但是执行start-yarn.sh之后,DataNode就消失了。这可能导致HDFS无法正常工作,影响整个集群的运行。我要先理清楚可能的原因,然后逐一排查。 首先,可能的原因之一是端口冲突。Hadoop的各个服务需要使用不同的端口,如果YARN启动后占用了DataNode需要的端口,DataNode就会被终止。比如DataNode默认使用50010端口,而NodeManager或者其他YARN组件可能配置错误占用了这个端口。这时候需要检查配置文件,比如hdfs-site.xml和yarn-site.xml,确认各个服务的端口是否冲突。 第二个可能的原因是资源不足。当YARN启动后,如果系统内存或CPU资源被过度分配给YARN的容器,可能导致DataNode进程因为资源不足而被系统杀死。这时候需要检查集群的资源分配情况,调整yarn.nodemanager.resource.memory-mb和yarn.scheduler.maximum-allocation-mb等参数,确保有足够的资源留给DataNode。 第三个可能性是配置文件错误。比如在start-yarn.sh脚本中错误地覆盖了某些HDFS的配置,导致DataNode无法正确启动。需要检查start-yarn.sh和相关脚本,确保环境变量和配置参数正确,特别是HADOOP_CONF_DIR是否指向正确的配置文件目录。 接下来,按照用户提供的引用内容,看看有有相关的线索。引用[1]提到需要修改start-dfs.sh、stop-dfs.shstart-yarn.sh、stop-yarn.sh这四个文件中的用户设置,如果用户使用不同的用户启动Hadoop,可能需要将root改为对应的用户。如果这些脚本中的用户配置不一致,可能导致权限问题,进而影响进程启动和运行。例如,如果DataNode是以hadoop用户启动的,而YARN相关服务尝试以root用户运行,可能会导致冲突,DataNode被终止。 引用[3]提到在启动start-dfs.sh有NameNode的问题,解决方法涉及到检查配置文件、格式化NameNode以及查看日志。同样地,DataNode消失的问题也可以查看DataNode的日志,通常在logs目录下的hadoop-hadoop-datanode-*.log文件,里面可能有错误信息提示,比如端口冲突或者权限问题。 那么,具体的解决步骤应该是: 1. 检查端口冲突:使用netstat命令查看50010、50020等DataNode使用的端口是否被占用,尤其是在执行start-yarn.sh之后。如果发现冲突,修改hdfs-site.xml中的相应端口配置,或者调整YARN的端口设置。 2. 检查资源分配:查看集群的可用内存和CPU资源,确保YARN的资源分配不会挤占DataNode所需的内存。可能需要调整yarn-site.xml中的内存参数,减少每个容器的内存分配,或者增加物理资源。 3. 核对配置文件:检查start-yarn.sh和其他启动脚本中的环境变量,比如HADOOP_CONF_DIR是否正确,确保YARN启动时使用的是正确的配置文件,不会覆盖HDFS的配置。同时,确认所有节点上的配置文件一致,特别是涉及到主机名、IP地址和端口的地方。 4. 用户权限问题:根据引用[1],确认所有启动脚本中的用户设置是否正确,特别是如果Hadoop是用特定用户(如hadoop)而非root运行的,需要确保start-yarn.shstart-dfs.sh中的用户一致,避免权限冲突导致DataNode进程被终止。 5. 查看日志文件:检查DataNode的日志文件,寻错误或异常信息。例如,如果日志中出现“java.net.BindException: Address already in use”,说明端口被占用;如果出现权限被拒绝的错误,可能需要调整用户权限或SELinux设置。 6. 测试单独启动组件:先单独启动HDFSstart-dfs.sh),确认DataNode正常运行,然后单独启动YARN(start-yarn.sh),观察DataNode是否消失。如果问题仅在启动YARN后出现,可能与YARN的配置或资源分配有关。 另外,考虑Hadoop版本兼容性问题,不同版本的Hadoop可能存在已知的bug,需要确认使用的Hadoop版本是否稳定,或者是否有相关的补丁需要应用。 总结可能的原因和解决方法后,应该按照步骤逐步排查,从端口、资源、配置、权限到日志分析,逐一排除问题,到导致DataNode消失的具体原因,并针对性地解决。</think>### Hadoop集群中DataNode进程启动YARN后消失的原因及解决方法 #### 问题分析步骤: 1. **检查端口冲突** - **现象**:YARN组件(如NodeManager)可能占用了DataNode的默认端口(如`50010`或`50020`)。 - **验证方法**: 执行`start-yarn.sh`后,通过以下命令检查端口占用: ```bash netstat -tulpn | grep <DataNode端口> ``` 若发现冲突,需修改`hdfs-site.xml`中的端口配置(如`dfs.datanode.address`)[^1]。 2. **检查资源分配** - **现象**:YARN的资源分配过度占用内存,导致DataNode因资源不足被系统终止。 - **验证方法**: 查看`yarn-site.xml`中的以下参数: ```xml <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>8192</value> <!-- 需根据物理内存调整 --> </property> ``` 确保剩余内存足够支撑DataNode进程[^2]。 3. **核对配置文件与脚本权限** - **现象**:`start-yarn.sh`或`start-dfs.sh`中的用户配置不一致,导致权限冲突。 - **验证方法**: 检查所有节点上的启动脚本(`start-dfs.sh`、`start-yarn.sh`等)是否将`HADOOP_USER`设置为同一用户(如`hadoop`)。 例如: ```bash HADOOP_USER="hadoop" # 确保所有脚本中用户一致 ``` 若使用非root用户,需避免权限错误。 4. **查看DataNode日志** - **日志路径**:`$HADOOP_HOME/logs/hadoop-<user>-datanode-<hostname>.log` - **关键信息**: - `BindException`:端口被占用。 - `Permission denied`:权限问题,需检查SELinux或用户组设置。 - `OutOfMemoryError`:资源不足,需调整YARN内存参数[^3]。 5. **测试组件独立启动** - **步骤**: 1.启动HDFS: ```bash start-dfs.sh && jps # 确认DataNode存在 ``` 2. 单独启动YARN: ```bash start-yarn.sh && jps # 观察DataNode是否消失 ``` - **结果**:若仅在启动YARN后DataNode消失,需重点检查YARN配置。 --- #### 解决方案 1. **修改DataNode端口** 在`hdfs-site.xml`中显式指定端口: ```xml <property> <name>dfs.datanode.address</name> <value>0.0.0.0:50010</value> <!-- 改为空闲端口 --> </property> ``` 2. **调整YARN内存分配** 在`yarn-site.xml`中限制资源使用: ```xml <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>4096</value> <!-- 根据物理内存调整 --> </property> ``` 3. **统一启动脚本用户权限** 修改所有节点的`start-yarn.sh`和`start-dfs.sh`,确保使用相同用户: ```bash # 文件开头添加 export HADOOP_USER=hadoop ``` 4. **检查防火墙/SELinux** - 关闭防火墙或开放Hadoop相关端口: ```bash systemctl stop firewalld # CentOS ufw allow 50010/tcp # Ubuntu ``` - 临时禁用SELinux: ```bash setenforce 0 ``` 5. **更新Hadoop版本** 若问题由版本缺陷引起,升级至稳定版本(如3.3.6)。 --- #### 引用验证 - **引用[1]**提到用户权限配置需一致,否则可能导致组件异常终止。 - **引用[3]**指出日志分析是定位问题的关键步骤[^3]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值