威佐夫博弈

威佐夫博弈的具体证明
//其实证明网上都有没必要我来写一遍好了不说题外话
题意
通过观察。容易得出以下性质:
1、(a,b)和(b,a)的胜负性相同。
2、若 (a, b) 是P位置,则对于所有的 x!=a 和 y!= b,(x, b) 和 (a, y) 是N位置。
3、若 (a, b) 是P位置,则对于所有的 d > 0,(a + d, b + d) 是N位置

定理一:在除(0,0)外的所有的P位置中,每个正整数恰好出现一次

若有k出现两次。设为(k,a)和(k,b)。则显然与性质2矛盾。
若有k没有出现。则有(k,k+i)均为N位置。
则对于任意i,必有对应的j(0

定理二:每行第一个数是前面没有出现过的最小正整数

由定理一。每个数字恰巧出现一次,而按照上面的定义,第二列的数总比同行第一列大,第一列又按照升序排列,所以每一行的第一个数正好为前面每一行中没有出现过的最小正整数。

定理三:第i行第二个数等于该行第一个数加上i

数学归纳法:
1、对于第一行是成立的。
2、若对于前i-1行成立。设第i行状态为(x,x+d)。易看出d>=i。因为若d<i。必能通过同时减去一个数变为之前出现的P位置。那么这个状态就是N位置。
那么(x+d)一定没有在前面的序列出现过。因为x必比第一列之前任何数都大。而前i-1行的第二个数都是第一个数加上对应的行数。而d>=i。所以(x+d)必大于之前出现的所有数。
不难看出d=i是恰为P位置。因为x和x+d此前均未出现。所以不能通过在某一堆中拿走若干石子使到达P位置。亦不能同时拿走若干石子使到达P位置。
于是d>i时均为N位置。
(其实感觉此处证明并不严谨。有更好的证明可以发给我看看。)

于是我们有了暴力构造所有P位置的方法。下面讲解通项公式。

引理:Betty定理

若a,b是正无理数且

1a+1b=1

P={[ta]|tZ},Q={[tb]|tZ}
则P,Q是Z*的一个划分

于是发现上面恰为一个Betty数列。
猜想第t行的第一个数满足[ta]的形式。
则第二个数满足[ta]+t=[ta+t]=[t(a+1)]
由Betty定理的定义: 1a+1a+1=1
解得a=5+12
即黄金分割数= =。

于是有通项公式

第i个P位置的第一项为 [5+12i]。第二项为第一项加上i。

最后证明Betty定理(证明来自百度百科)
1、证明P∩Q为空集
(反证法)假设k为P∩Q中的一个元素,则存在正整数m、n使得[ma]=[nb]=k
k<manb<k+1,等价地改写不等式为
mk+1<1a<mknk+1<1b<nk
相加起来得 m+nk+1<1<m+nk
k<m+n<k+1。这与m、n为整数有矛盾,所以P∩Q为空集。
2、证明Z*=P∪Q
已知P∪Q是Z+的子集,剩下来只要证明Z+是P∪Q的子集。
(反证法)假设有一个元素k属于Z+且不属于P∪Q。则存在正整数m、n使得[ma]<k<[(m+1)a][nb]<k<[(n+1)b]
由此得ma<k[(m+1)a]1<(m+1)a1 (因为a是无理数),类似地有nb<k[(n+1)b]1<(n+1)b1
等价地改写为 mk<1a<m+1k+1nk<1b<n+1k+1
两式加起来,得m+nk<1<m+n+2k+1
m+n<k<k+1<m+n+2。这与m, n, k皆为正整数矛盾。
证毕

阅读更多
版权声明:无 https://blog.csdn.net/NIV__/article/details/54587849
文章标签: 基本博弈
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭