博弈论入门——威佐夫博弈

规则: 有两堆石子,两人轮流操作,每次可以从某一堆中取走一些石子,也可以同时从两堆石子中取走相同数量的石子,数量不限,但不能不取。无法操作的人失败。

我们可以通过枚举发现 (0, 0)、(1, 2)、(2, 1)、(3, 5)、(5, 3) 这些状态都属于必败态。但同样的,如果想接着往后枚举推理又变得困难了起来。好在这个游戏只有两堆石子,我们可以将两堆石子数 x, y 映射到平面直角坐标系的点 (x, y) 上,使得游戏的每一个局面都对应坐标中的一个点,这样就可以用平面图来辅助我们进行分析。游戏的两种操作则表示坐标点向左、向下或向左下移动任意距离。

于是我们就可以画出这样的一张图

123

先解释下这张图是如何画出来的,首先 (0, 0) 点一定是必败态,我们把 (0, 0) 点标记为红色。然后将 (0, 0) 点右方、上方以及右上方的所有点都标为绿色。这些点都是必胜态,因为这些点对应的状态都可以直接转移至必败态 (0, 0)。然后我们要找到下一个必败态,才好递推地找出所有必败态和必胜态。回忆一下必败态的性质,必败态只能转移至必胜态。于是不难发现点 (1, 2) 的左侧、下侧以及左下侧的所有点的状态都以已确定了,都为必胜态,即点 (1, 2) 所有可转移的状态都为必胜态,所以该点为必败态。同理,点 (2, 1) 也为必败态。我们将这两点标红,再将它们右侧、上侧以及右上侧的所有点标绿。如此往复,我们就可以递推地找出所有的必胜态和必败态了。

威佐夫博弈

从图中可以看出 ,这些必败点似乎是线性的,如果描的点足够多,就会发现这些点连成的线的斜率接近黄金比例 1.618,这不是巧合,实际上这些必败点的组成的集合满足MommyTalk1634965441681

MommyTalk1634965560741

直接推出这个结论较为困难,所以这里还是先给出结论再加以证明

证明这个结论是否正确,只需证 W 不重不漏地包括了所有必败点。

点集 W 具有以下性质:

  1. W 中各点的 x 值组成的整数集不重不漏地包含每一个正整数,y 值同理
  2. W 中各点的 x 与 y 的差值不重不漏地包含所有整数,且当 x < y 时,y - x 随着 x 增大而递增,当 x > y 时,x - y 随着 x 增大而递增

性质 1 证明:

这里需要引入 Beatty 定理,若存在两个无理数 a, b, 满足MommyTalk1634965639869

则对于以下两个集合 MommyTalk1634965683098

MommyTalk1634965714532

简单证明一下 Beatty 定理,我们先考虑区间 [1, n],在 A 和 B 在区间中的元素个数分别为

MommyTalk1634965855010

我们知道对于两个正数 a, b,有 MommyTalk1634965894818

于是 MommyTalk1634965926143

又由于 MommyTalk1634966490280

所以 MommyTalk1634966518017

又因为 a, b 为无理数,所以 MommyTalk1634966544286

所以 MommyTalk1634966583648

MommyTalk1634966610724

于是集合 A 与 集合 B 的元素个数之和正好等于区间 [1, n] 中的正整数个数。又由于在区间 [1, n+1] 上时,A 和 B 的元素个数之和为 n 个,即随着区间右端点地移动,元素个数也随之增加,说明 A 和 B 正好不重复地包含了区间 [1, n] 上的所有整数。

根据 Beatty 定理,由于 MommyTalk1634966651072

所以 MommyTalk1634966675276

由于对称性,某一点的 x 值会与另一点的 y 值相同。

性质 2 证明:

由于黄金比例满足 MommyTalk1634966698946

式子左右同乘 i 于是有 MommyTalk1634966731158

MommyTalk1634966755722

由于减号两端均为无理数,相减得到整数说明小数点后的数相等,取整不影响结果

所以 MommyTalk1634966775829

以下通过这两条性质证明 W 不重不漏地包括了所有必败点:

设 (x1, y1), (x2, y2) 为 W 中的两个点:

  1. 若 (x1 - k, y1) = (x2, y2) 则有 y1 = y2 与 W 的性质 1 矛盾。同理,不存在 (x1, y1 - k) = (x2, y2 - k)。故无法通过只改变 x 或 y 使得 W 中的一个点变为另一个点。
  2. 若 (x1 - k, y1 - k) = (x2, y2) ,则有 y1 - x1 = y2 - x2 与 W 的性质 2 矛盾。故也无法通过同时改变 x 和 y 使得 W 中的一个点变为另一个点。

综上,点集 W 中的任意一个点无法一步变为 W 中的另一个点

设 (a, b) 为 W 的补集中的一个点 (a < b):

在点集 W 中寻找一个点 (x0, y0),使得 a = x0,根据性质 1 可知该点一定存在

  1. 若 b > y0 ,则存在 k 使得 (a, b - k) = (x0, y0),即点 (a, b) 可以一步变为 W 中的点
  2. 若 b < y0 ,说明 y0 - x0 > b - a,由 W 的性质 2 可知 W 中存在点 (x1, y1) 满足 y1 - x1 = b - a 且 x1 < x0 = a。故存在 k 使得 (a - k, b - k) = (x1, y1),即点 (a, b) 可以一步变为 W 中的点

以上仅考虑了 a < b 的情况,由于对称性,当 a > b 时也同理。而当 a = b 时,(a, b) 可直接转移至 点 (0, 0)

综上,W 的补集中的任意一个点都可以一步变为 W 中

所以 W 满足必败态的两个条件,因此原命题得证。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值