©原创作者 | 杨健
论文标题:
K-BERT: Enabling Language Representation with Knowledge Graph
收录会议:
AAAI
论文链接:
https://ojs.aaai.org/index.php/AAAI/article/view/5681
项目地址:
https://github.com/autoliuweijie/K-BERT
01 背景论述
笔者在前面的论文解读中提到过ERNIE使用基于自注意力机制来克服异构向量的融合,而KEPLER更进一步,将实体的描述文本作为训练语料,利用文本编码器生成实体的初始化语料,避免了异构语义向量的生成。
那么除了这一方式以外,是否还存在别的方式在注入异构知识的过程中解决异构向量的问题呢?
既然造成异构向量的原因在于使用不同的表示学习方式对不同结构的对象进行表示学习,那么一个直接的思路就是将不同结构的对象转换成同一结构,从而使用同一种表示学习方式对其编码。
本文所解读的K-BERT模型正是通过将知识图谱中的三元组转换为文本序列实现了结构的统一,在此基础上使用预训练语言模型编码文本和知识。
具体而言,K-BERT首先将图谱中的三元组视为单向的文本序列,通过对齐输入序列中的相同的实体名作为桥梁,实现文本序列和三元组序列之间的链接,形成如下图所示的句子树结构:

K-BERT模型通过将知识图谱中的三元组转换为文本序列,构建句子树结构,以此解决异构向量问题。通过知识层、表示层、可见层和编码器四个模块,K-BERT注入知识并微调预训练模型,提高自然语言理解任务的性能。实验表明,知识图谱的注入能有效提升问答和实体识别任务的准确性。
最低0.47元/天 解锁文章
1274

被折叠的 条评论
为什么被折叠?



