hdu 4366 Successor dfs序 + 线段树

大致题意:题目给出一棵树,每个节点有能力值和忠诚度,查询u,就是查询在u的所有子树节点中找一个能力值比u高,(不能相同),而且忠诚度最大的结点。
思路:首先把树状的结构变成线性的,要不然不能利用题目里面的区间性,在子树中查询用到的就是dfs序,重新编号之后,把能力值从大到小排序,(注意一点,为了解决相同的能力值的冲突,在能力值相同的情况下,我是按照dfs序的从小到大排的),然后一个一个先查询,之后再插入。

http://acm.hdu.edu.cn/showproblem.php?pid=4366

#include <map>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>

using namespace std;

const int MAXN = 50005;
const int MAXE = 100005;
const int INF = 0x3f3f3f3f;

struct Row_Edge{
    int fa;
    int lo;
    int ab;
    int id;
}RE[MAXN];

struct Edge {
    int to;
    Edge * next;
}E[MAXE],*EE;

struct Gragh{
    int s;
    int e;
    int idx;
    Edge * first;
}G[MAXN];

struct Node {
    int x,y;
    int value;
    int pos;
}t[MAXN<<2];

int Q_Array[MAXN];
int ANS[MAXN];

int n,m;
int index = 1;
int pos[MAXN];
int maxlo,maxpos;

void init() {
    //初始化;
    EE = E;
    memset(G,0,sizeof(G));
    index = 1;
}

void addedge(int u,int v) {
    EE->to = v ; EE -> next = G[u].first; G[u].first = EE ++;
    EE->to = u ; EE -> next = G[v].first; G[v].first = EE ++;
}

void dfs(int u,int fa = 0) { //dfs序 
    //重新编号,找出一个点管辖的是那些点;
    //G[u]管辖的是从G[u].s 到 G[u].e 的点
    pos[index] = u;
    G[u].idx = index;
    index ++;
    G[u].s = index;
    for(Edge * p = G[u].first ; p ; p = p -> next) {
        if(p->to != fa) {
            dfs(p->to,u);
        }
    } 
    G[u].e = index - 1;
}

bool cmp(Row_Edge a1,Row_Edge a2) {
    if(a1.ab == a2.ab) {
        //相同的ab值是存在的,脑补出这种方法解决冲突。
        return G[a1.id].idx < G[a2.id].idx;
    }
    return a1.ab > a2.ab;
}

void Push_Up(int rt) {
    if(t[rt<<1].value > t[rt<<1|1].value) {
        t[rt].pos = t[rt<<1].pos;
    }
    else {
        t[rt].pos = t[rt<<1|1].pos;
    }
    t[rt].value = max(t[rt<<1].value,t[rt<<1|1].value);
}

void Build(int x,int y,int rt) {
    t[rt].x = x ; t[rt].y = y;
    if(x == y) {
        t[rt].value = -1;
        t[rt].pos = pos[x];
        return ;
    }
    int mid = (x + y) >> 1;
    Build(x,mid,rt<<1);
    Build(mid+1,y,rt<<1|1);
    Push_Up(rt);
}

void Update(int rt,int k,int value) {
    if(t[rt].x == t[rt].y) {
        t[rt].value = value;
        t[rt].pos = k;
        return ;
    }
    int mid = (t[rt].x + t[rt].y) >> 1;
    if(mid >= k) {
        Update(rt<<1,k,value);
    }
    else {
        Update(rt<<1|1,k,value);
    }
    Push_Up(rt);
}

void Query(int rt,int left,int right) {
    if(right < left) return ;
    if(left <= t[rt].x && right >= t[rt].y) {
        if(t[rt].value > maxlo) {
            maxlo = t[rt].value;
            maxpos = t[rt].pos;
        }
        return ;
    }
    int mid = (t[rt].x + t[rt].y) >> 1;
    if(mid >= left) {
        Query(rt<<1,left,right);
    }
    if(mid < right) {
        Query(rt<<1|1,left,right);
    }
}

void input() {
    init();
    scanf("%d %d",&n,&m);
    for(int i = 1 ; i <= n - 1 ; i ++) {
        scanf("%d %d %d",&RE[i].fa,&RE[i].lo,&RE[i].ab);
        //存下边的原始条件,因为要排序从大到小一个一个插入;
        //RE[i].fa i结点的父亲 RE[i].lo i结点的荣誉值 RE[i].ab i结点的能力值;
        RE[i].id = i;
        addedge(i,RE[i].fa);
        //加边,形成一棵树;
    }
    for(int i = 1 ; i <= m ; i ++) {
        scanf("%d",&Q_Array[i]);
        //查询的序列;
    }
}

void solve() {
    Build(1,n,1);
    dfs(0);
    sort(RE+1,RE+n,cmp);
    // for(int i = 1 ; i <= n-1 ; i++) {
    //  printf("%d %d %d\n",RE[i].id,RE[i].ab,RE[i].lo);
    // }

    //print();
    //从大到小排序之后,插入n-1条边;
    for(int i = 1 ; i <= n - 1 ; i ++) {
        maxlo = -1;
        maxpos = -1;
        Query(1,G[RE[i].id].s,G[RE[i].id].e);
        //查询从开始到结束的区间,是否存在pos;
        ANS[RE[i].id] = maxpos;
        //根据ab值排序,所以应该根据lo的值插入;
        Update(1,G[RE[i].id].idx,RE[i].lo);
    }
    maxlo = -1;
    maxpos = -1;
    Query(1,1,n);
    ANS[0] = maxpos;
    for(int i = 1 ; i <= m ; i++) {
        if(ANS[Q_Array[i]] == -1) printf("%d\n",ANS[Q_Array[i]]);
        else printf("%d\n",pos[ANS[Q_Array[i]]]);
    }
}

int main(void) {
    freopen("a.in","r",stdin);
    int T;
    scanf("%d",&T); 
    while(T--) {
        input();
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值