累加器传送门:
http://blog.csdn.net/NOIAu/article/details/71775000
题目:
从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。
输入:
输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。
输出:
输出只有一行一个数:最小的运输费用。
样例输入:
9
1 2
2 1
3 3
1 1
3 2
1 6
2 1
1 2
1 1
样例输出:
26
定义状态dp[i]表示第二个伐木场在i的最小费用
cost[i][j]表示i到j的树木到在j位置的伐木场的最小费用
sumw[i]表示w的前缀和
sumwd[i]表示w*(d的前缀和)
则有:
dp[i] = min(cost[1][j] + cost[j+1][i] + cost[i+1][n])
cost[i][j] = (sumw[j] – sumw[i-1]) * d[j] – (sumwd[j] – sumwd[i-1])
dp[i] = min(sumw[j] * d[j] – sumw[j] * d[i]) + sumw[i] * d[i] + sumw[n] * d[n] – sumw[i] * d[n] – sumwd[n]
用斜率优化,维护凸包即可
#include<cstdio>
#include<iostream>
#include<cstring>
#define MAXN 20000+10
using namespace std;
int q[MAXN],head,tail;
int dp[MAXN],sumw[MAXN],sumwd[MAXN],d[MAXN];
int sumd[MAXN],n,temp;
int final=0x7fffffff;
int getx(int i){ return sumw[i]; }
int gety(int i){ return sumw[i]*sumd[i]; }
int getk(int i){ return sumd[i]; }
int getb(int i,int j){ return gety(j)-getk(i)*getx(j); }
int main(){
scanf("%d",&n);
for(register int i=1;i<=n;i++){
scanf("%d%d",&sumw[i],&sumd[i+1]);
sumw[i]+=sumw[i-1];sumd[i+1]+=sumd[i];
sumwd[i]=sumwd[i-1]+(sumd[i]-sumd[i-1])*sumw[i-1];
}
n++;
sumwd[n]=sumwd[n-1]+(sumd[n]-sumd[n-1])*sumw[n-1];
int head,tail;
head=0;tail=-1;
q[++tail]=1;
for(int i=2;i<n;i++){
while(head<tail&&getb(i,q[head])>=getb(i,q[head+1]))head++;
dp[i]=sumwd[n]+sumw[q[head]]*(sumd[q[head]]-sumd[i])+sumw[i]*(sumd[i]-sumd[n]);;
final=min(final,dp[i]);
while(head<tail&&(getx(i)-getx(q[tail-1]))*(gety(q[tail])-gety(q[tail-1]))-(getx(q[tail])-getx(q[tail-1]))*(gety(i)-gety(q[tail-1]))>=0)tail--;
q[++tail]=i;
}
printf("%d",final);
return 0;
}