BZOJ 1070 [SCOI 2007]修车

Description

同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。


Input

第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。


Output

最小平均等待时间,答案精确到小数点后2位。


Sample Input

2 2
3 2
1 4


Sample Output

1.50


HINT

数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)


很显然的一道MCMF问题,直接模板套就行,当然,这道题难的是建图而不是MCMF,那么怎么建图呢?考虑洗车的先后会对时间的总和造成影响,所以我们把师傅拆成n*m个点,并且对于每个师傅,向车连边,具体是连一条流量为一,费用为当前这个车对于后面等待的人的影响,什么意思呢?就是说后面还有多少辆车,就会让后面的车等洗这辆车的时间乘以后面的车数,那么跑一遍MCMF就行了,值得注意的是汇点的设置要尽量大,弧和反向弧应该是可以互相异或的,另外,由于边的流量是一,也就是说选择这样一种情况的是或者否的情况得到了保证(0或1)

#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#define MAXN 100000+10
using namespace std;
int m,n,S,T;
int head[MAXN],tail=1;
struct Line{
    int from,to,nxt,flow,cost;
}line[MAXN];
bool vis[MAXN];
int final;
int pre[MAXN];
int dis[MAXN];
int a[1000+10][1000+10];
void add_line(int from,int to,int flow,int cost){
    tail++;
    line[tail].from=from;
    line[tail].to=to;
    line[tail].flow=flow;
    line[tail].cost=cost;
    line[tail].nxt=head[from];
    head[from]=tail;
}
void add(int from,int to,int flow,int cost){ add_line(from,to,flow,cost);add_line(to,from,0,-cost); } 
bool SPFA(){
    for(register int i=0;i<=T;i++) dis[i]=0x7ffffff;
    queue<int>q;
    q.push(S);dis[S]=0;vis[S]=true;
    while(!q.empty()){
        int u=q.front();q.pop();
        for(register int i=head[u];i;i=line[i].nxt){
            int v=line[i].to;
            if(dis[u]+line[i].cost<dis[v]&&line[i].flow){
                dis[v]=dis[u]+line[i].cost;
                pre[v]=i;
                if(!vis[v]){
                    q.push(v);
                    vis[v]=true;
                }
            }
        }
        vis[u]=false;
    }
    if(dis[T]==0x7ffffff) return false;
    return true;
}
void MCMF(){
    int temp=0x7ffffff;
    for(register int i=pre[T];i;i=pre[line[i].from])
    temp=min(temp,line[i].flow);
    for(register int i=pre[T];i;i=pre[line[i].from]){
        line[i].flow-=temp;
        line[i^1].flow+=temp;
        final+=line[i].cost*temp;
    }
}
void solve(){
    while(SPFA()) MCMF();
}
int main(){
    scanf("%d%d",&n,&m);//n为师傅数,m为车数 
    S=0;T=1000+10;
    for(register int i=1;i<=m;i++)
        for(register int j=1;j<=n;j++)
            scanf("%d",&a[i][j]);
    for(register int i=1;i<=m*n;i++) add(S,i,1,0);
    for(register int i=m*n+1;i<=m*n+m;i++) add(i,T,1,0);
    for(register int i=1;i<=n;i++)
        for(register int j=1;j<=m;j++)
            for(register int k=1;k<=m;k++)
                add((i-1)*m+j,m*n+k,1,a[k][i]*j);
    solve();
    printf("%0.2lf",(double)final/m);
    return 0;
}

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值