这些方法提供了不同的途径来优化大数据量的分页查询,尤其针对 MySQL 数据库。
### 方法 1: 直接使用 LIMIT
- **适应场景:** 适用于数据量少的情况(百/千级)。
- **原因/缺点:** 全表扫描,速度慢,而且有些数据库结果集返回不稳定。
### 方法 2: 建立主键或唯一索引利用索引
- **适应场景:** 适用于数据量大的情况(万级)。
- **原因:** 索引扫描速度快,但可能出现数据漏掉的情况。
### 方法 3: 基于索引再排序
- **适应场景:** 数据量大(万级),需要稳定结果集。
- **原因:** 利用索引扫描,再排序,确保结果集稳定,但 MySQL 的排序操作只有 ASC。
### 方法 4: 基于索引使用 prepare
- **适应场景:** 大数据量。
- **原因:** 索引扫描,速度快,而且 prepare 语句比一般查询语句快一点。
### 方法 5: 利用 ORDER 操作快速定位部分元组
- **原因:** 利用 ORDER 操作可以利用索引快速定位部分元组,避免全表扫描。
### 方法 6: 利用子查询/连接+索引快速定位元组的位置
- **原因:** 类似于方法 5,利用子查询或连接再结合索引快速定位元组位置。
这些方法提供了不同的优化策略,但在选择时需根据实际场景和数据库特性进行权衡。针对特定需求,可能需要尝试不同的方法来找到最适合的分页查询优化方案。