java 数据结构 优先级队列(PriorityQueue)

本文介绍了优先级队列的概念,如何使用堆数据结构实现,包括堆的概念、性质、存储方式、创建、插入、删除以及堆排序的过程。同时讨论了Java中的PriorityQueue特性和使用注意事项。
摘要由CSDN通过智能技术生成

目录

优先级队列

堆的概念

堆的性质

堆的存储方式

堆的创建

堆的插入

堆的删除

用堆模拟实现优先级队列

PriorityQueue的特性

PriorityQueue常用接口介绍

堆排序


优先级队列

前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优


先级,一般出队 列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,


比如:在手机上玩游戏的时候,如 果有来电,那么系统应该优先处理打进来的电话;初中那会班


主任排座位时可能会让成绩好的同学先挑座位。


在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新


的对象这种数据结构就是优先级队列(Priority Queue)。


PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整


堆的概念

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储

方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i

= 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫

做最小堆或小根堆


堆的性质

1.堆中某个节点的值总是不大于或不小于其父节点的值;
2.堆总是一棵完全二叉树


堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。

将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2

如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子

如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子


堆的创建

图解

代码例子:

public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
    int child = 2 * parent + 1;
    int size = array.length;
while (child < size) {
// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
    if(child+1 < size && array[child+1] < array[child]){
    child += 1;
}
// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
    if (array[parent] <= array[child]) {
    break;
    }else{
// 将双亲与较小的孩子交换
    int t = array[parent];
    array[parent] = array[child];
    array[child] = t;
// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
    parent = child;
    child = parent * 2 + 1;
}
}
}

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整


堆的插入

堆的插入总共需要两个步骤:

1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)

2. 将最后新插入的节点向上调整,直到满足堆的性质

做法:

public void shiftUp(int child) {
// 找到child的双亲
    int parent = (child - 1) / 2;
while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束
    if (array[parent] > array[child]) {
    break;
}
    else{
// 将双亲与孩子节点进行交换
    int t = array[parent];
    array[parent] = array[child];
    array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
    child = parent;
    parent = (child - 1) / 1;
}
}
}


堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换

2. 将堆中有效数据个数减少一个

3. 对堆顶元素进行向下调整

做法:

    //按指定下标删除
    public int remove(int index) {
        if (empty() || (index < 0 || index > usedSize)) {
            return -1;
        }
        int old = elem[index];
        //要删除的值 和 最后一个结点进行交换
        swap(elem, index, usedSize - 1);
        //先把元素减少一个
        usedSize--;
        //如果要删除的就是最后一个直接就结束了
        if (index == usedSize) {
            return old;
        }

        //获取删除元素的父结点的下标
        int parent = (index - 1) / 2;
        //index > 0 为什么要加这个条件? 因为如果下标为0根结点 就没有父结点
        //如果要删除的结点的值比父结点的大 我们用向上调整
        if (index > 0 && elem[index] > elem[parent]) {
            siftUp(index);
        } else {
            siftDown(index, usedSize);
        }
        return old;
    }

    //普通删除
    public int pop() {
        //判空
        if (empty()) {
            return -1;
        }
        int oldVal = elem[0];
        swap(elem, 0, usedSize - 1);
        usedSize--;
        siftDown(0, usedSize);
        return oldVal;
    }


用堆模拟实现优先级队列

做法:

public class MyPriorityQueue {
// 演示作用,不再考虑扩容部分的代码
    private int[] array = new int[100];
    private int size = 0;
    public void offer(int e) {
    array[size++] = e;
    shiftUp(size - 1);
}
public int poll() {
    int oldValue = array[0];
    array[0] = array[--size];
    shiftDown(0);
    return oldValue;
}
public int peek() {
    return array[0];
}
}


PriorityQueue的特性

Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,

PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的

关于PriorityQueue的使用要注意:


1. 使用时必须导入PriorityQueue所在的包,即:

import java.util.PriorityQueue;

2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出
ClassCastException异常

3. 不能插入null对象,否则会抛出NullPointerException

4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容

5. 插入和删除元素的时间复杂度为

6. PriorityQueue底层使用了堆数据结构

7. PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素


PriorityQueue常用接口介绍

1. 优先级队列的构造

代码例子:

static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11
PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
    ArrayList<Integer> list = new ArrayList<>();
    list.add(4);
    list.add(3);
    list.add(2);
    list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素
PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
    System.out.println(q3.size());
    System.out.println(q3.peek());
}
注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器

例子:

// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{
@Override
public int compare(Integer o1, Integer o2) {
    return o2-o1;
}
}
public class TestPriorityQueue {
public static void main(String[] args) {
PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
    p.offer(4);
    p.offer(3);
    p.offer(2);
    p.offer(1);
    p.offer(5);
System.out.println(p.peek());
}
}
此时创建出来的就是一个大堆


堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

升序:建大堆

降序:建小堆

2. 利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序

这里利用大根堆进行堆的排序

从小到大排序,我们需要建立大根堆

思路:创建大根堆,每次让下标为0的元素跟最后一个元素交换,然后调整,调整完,下标--

    //堆排序
    public void heapSort() {
        //下标最后一个的元素
        int end = usdSize - 1;
        //调整到下标为0的元素的时候结束
        while (end > 0) {
            //跟下标为0的元素进行交换
            swap(0, end);
            //向下调整
            siftDown(0, end);
            //然后倒数第二个换,以此类推
            end--;
        }
    }

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值