Java七十二: Java8新特性 - - Stream类

本文详细介绍了Java8的StreamAPI,包括它的引入、特点、创建方式、中间操作(筛查、映射、排序)以及终止操作(匹配、查找、归约、收集)。StreamAPI提供了一种高效且延迟执行的处理数据方式,类似SQL查询,适用于多种数据源。通过实例展示了如何使用StreamAPI进行数据筛选、映射转换、排序和统计等操作,揭示了其在实际开发中的强大功能。
摘要由CSDN通过智能技术生成

StreamAPI - - Java8新特性

一、引入
  1. Stream是Java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作

  2. 使用StreamAPI对集合数据进行操作,就类似于使用SQL执行的数据库查询。简言之:StreamAPI提供了一种高效且易于使用的处理数据的方式

  3. 实际开发中,项目中的多数数据都来在MySQL,Oracle等。但现在数据源可以更多,有MongDB,Radis等,而这些NoSQL的数据就需要Java层面去处理。

  4. Stream和Collection的区别

    ① Collection:是一种静态的内存数据结构,主要面向内存,存储在内存中

    ② Stream:是有关计算的。面向CPU,通过CPU实现计算。

二、Stream到底是什么
  1. Stream是数据渠道,用于操作数据源(集合、数组等)所产生的元素序列。集合讲数据、Stream讲计算。

  2. 特性

    ① Stream 自己不会存储元素
    ② Stream 不会改变源对象。相反,他们会返回一个持有结果的先Stream
    ③ Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。

  3. 操作三步骤

    ① 创建Stream

    创建一个基于某一数据源(如:集合、数组···)的流

    ② 中间操作

    一个中间操作链,对该数据源的数据进行处理

    ③ 终止操作(终端操作)

    一旦执行终止操作,就执行中间操作链,并产生结果。之后,不会再被使用(即:如果再想使用,需要从新再创建Stream)。

  4. 功能总结:(核心)

    创建基于该集合的Stream对象,通过该Stream对象的操作来实现对该集合中数据的筛查、映射、排序等操作,产生一个符合某种条件的新的数据源,最后按照所需要的格式或条件终止操作并输出

三、创建Stream对象

​ 根据不同的数据结构类型,及数据的有无选择对应的创建方式

  1. 方式一:通过集合
    @Test
        // 方式一:通过集合,可以产生两种流,顺序流和并行流
        public void testCollection() {
            List<Employee> em = EmployeeData.getEmployees();
            // 1.default Stream<E> stream() 返回一个顺序流
            Stream<Employee> stream1 = em.stream();
            // 2.default Stream<E> parallelStream() 返回一个并行流
            Stream<Employee> stream2 = em.parallelStream();
        }
    
  2. 方式二:通过数组
    @Test
        // 方式二:通过数组,因为数据结构是数组
        public void testArrays() {
            int[] ints = new int[]{1, 2, 3, 4, 5, 6};
            // 调用Arrays类的static <T> Stream<T> stream(T[] array)方法
            IntStream stream1 = Arrays.stream(ints);
    
            Employee em1 = new Employee(101, "Tom");
            Employee em2 = new Employee(102, "Jack");
            Employee[] ems = new Employee[]{em1,em2};
            Stream<Employee> stream2 = Arrays.stream(ems);
        }
    
  3. 方式三:通过Stream的of()方法
     @Test
        // 方式三:通过Stream的of()方法,没有数据,现造数据
        public void testStreamOf() {
            Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
    
        }
    
  4. 方式四:创建无限流
    @Test
        // 方式四:创建无限流,没有数据,特殊的造数据方式
        public void testIterate(){
            /*
             * 1.迭代   public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
             *         UnaryOperator<T> f :该函数式接口中的方法是T apply (T t),参数与返回值类型
             *         一样,和一元运算结构一样,所以写成了Lambda表达式
             */
            Stream.iterate(0,t -> t+2).limit(10).forEach(System.out::println);
            /*
             * 2.生成    public static<T> Stream<T> generate(Supplier<T> s)
             *          Supplier<T> s 内的抽象方法是一个无参有返回值的方法结构,与Math类中的          	   *          random()一致
             */
            Stream.generate(Math::random).limit(19).forEach(System.out::println);
        }
    
四、Stream的中间操作

​ 多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!这种在终止操作时一次性全部处理的情况,被称为“惰性求值

  1. 筛查与切片

    在这里插入图片描述

     @Test
        public void test1() {
            // 1.获取数据结构
            List<Employee> list1 = EmployeeData.getEmployees();
            // 2.创建Stream对象
            Stream<Employee> stream1 = list1.stream();
            // 3.排除  不符合条件的元素
            stream1.filter(e -> e.getSalary() > 7000).forEach(System.out::println);
            System.out.println("--------------------------");
            // 4.截断  使元素不超过该数量 (每一个中间操作前都必须重新创建Stream对象,因为其是惰性求值)
            Stream<Employee> stream2 = list1.stream();
            stream2.limit(3).forEach(System.out::println);
            System.out.println("--------------------------");
            // 5.跳过  跳过前面几个元素
            Stream<Employee> stream3 = list1.stream();
            stream3.skip(3).forEach(System.out::println);
            System.out.println("--------------------------");
            // 6.筛查  使用元素重写的hashCode和equals方法自动去重
            Stream<Employee> stream4 = list1.stream();
            stream4.distinct().forEach(System.out::println);
        }
    
  2. 映射

    在这里插入图片描述

    public class StreamTes t{		
    	@Test
        public void test2() {
            // 1.获得集合
            List<String> list1 = Arrays.asList("aa", "bb", "cc", "dd");
            // 2.创建基于该集合的Stream对象
            Stream<String> stream1 = list1.stream();
            // 3.map映射,集合中的每一个元素会通过该函数的映射条件生成一个新的元素
            stream1.map(String :: toUpperCase).forEach(System.out::println);
            System.out.println("-----------------------");
            // 4.flatMap映射
            Stream<String> stream2 = list1.stream();
            stream2.flatMap(StreamTest::fromStringToStream).forEach(System.out::println);
            System.out.println("-----------------------");
            /*
             * 5.用map写上述flatMap的功能,(StreamTest::fromStringToStream)返回的
             *   是Stream<Stream<Character>>类型数据,
             *   所以在forEach方法中在对每一个Stream类型数据进行forEach操作
             */
            Stream<String> stream3 = list1.stream();
            stream3.map(StreamTest::fromStringToStream).forEach(
                						s -> s.forEach(System.out::println));
        }
        
        // 将字符串的字符转换成对应的Stream实例的方法
        public static  Stream<Character> fromStringToStream(String str) {
            ArrayList<Character> list = new ArrayList<>();
            for (Character c : str.toCharArray()) {
                list.add(c);
            }
            return list.stream();
        }
    }
    
  3. 排序

    在这里插入图片描述

    @Test
        public void test3() {
            // 1.获取集合
            List<Employee> list = EmployeeData.getEmployees();
            // 2.创建基于该集合的Stream对象
            Stream<Employee> stream1 = list.stream();
            // 3.用Lambda表达式写Comparator接口中compare方法的结构
            stream1.sorted((e1,e2) -> Integer.compare(e1.getAge(),e2.getAge())
                          ).forEach(System.out::println);
            System.out.println("---------------------------");
            Stream<Employee> stream2 = list.stream();
            stream2.sorted((e1,e2) -> {
                int value = Integer.compare(e1.getAge(),e2.getAge());
                if (value != 0) {
                    return value;
                }else {
                    return Double.compare(e1.getSalary(),e2.getSalary());
                }
            }).forEach(System.out::println);
        }
    
五、终止操作

​ 终止操作会从流的流水线生成结果,其结果可以是任何不是流的值,例如List、Integer,甚至 void

  1. 匹配与查找

    在这里插入图片描述

    @Test
        public void test4() {
            List<Employee> list = EmployeeData.getEmployees();
            Stream<Employee> stream1 = list.stream();
            // 1.allMatch  判断所有元素是否都满足该条件
            boolean allMatch = stream1.allMatch(e -> e.getAge() > 18);
            System.out.println(allMatch);
            // 2.anyMatch  判断是否有满足该条件的元素
            boolean anyMatch = list.stream().anyMatch(e -> e.getSalary() > 10000);
            System.out.println(anyMatch);
            // 3.nonMatch  判断所有元组是否都不满足该条件
            boolean noneMatch = list.stream().noneMatch(e -> e.getName().startsWith("雷"));
            System.out.println(noneMatch);
            // 4.findFirst  返回流中的第一个元素
            Optional<Employee> first = list.stream().findFirst();
            System.out.println(first);
            // 5.findAny  返回流中的任意一个元素
            Optional<Employee> any = list.parallelStream().findAny();
            System.out.println(any);
            // 6.count  返回流中的总个数
            long count = list.stream().count();
            System.out.println(count);
            // 7.max  返回流中最大值
            Optional<Employee> max = list.stream().max((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
            System.out.println(max);
            // 8.min  返回流中最小值
            Optional<Employee> min = list.stream().min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
            System.out.println(min);
            // 9.forEach  内部迭代
            list.stream().forEach(System.out::println);
            System.out.println("---------------------");
            list.forEach(System.out::println);
        }
    
  2. 归约

    在这里插入图片描述

    map和reduce的连接通常称为map-reduce模式,因为Google用它来进行网络搜索而出名。

    @Test
        public void test5() {
            List<Employee> list = EmployeeData.getEmployees();
            // 用map映射出集合中的各元素的工资项,新生成一个Double型的流
            Stream<Double> stream = list.stream().map(Employee :: getSalary);
            // 用reduce对map映射新生成的流进行归约
            Optional<Double> reduce = stream.reduce(Double::sum);
            System.out.println(reduce);
        }
    
  3. 收集

    在这里插入图片描述

    Collector接口中方法的实现决定了如何对流执行收集的操作(如收集到List、Set、Map)

    @Test
        public void test6() {
            List<Employee> list = EmployeeData.getEmployees();
            list.stream().filter(e -> e.getSalary() > 7000)
                         .collect(Collectors.toList()).forEach(System.out::println);
        }
    
六、Collectors类

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

e_nanxu

感恩每一份鼓励-相逢何必曾相识

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值