1、树的定义
1、有且只有一个根的节点;
2、有若干个互不相交的子树,这些子树本身也是一棵树;
通俗定义:树是由节点和边组成;每个节点只有一个父节点,可以有多个子节点;根节点没有父节点。
专业术语:
节点 父节点 子节点 子孙 堂兄弟
*树的深度:*从根节点到最底层节点的层数称为深度,根节点是第一层;
*叶子节点:*没有子节点的节点
*非终端节点:*实际就是非叶子节点
*度:*子节点的个数为度
2、树的分类
1、一般树
任意一个节点的子节点的个数都不受限制
2、二叉树
任意一个节点的子节点个数最多两个,并且子节点的位置不可改变
分类:
(1)一般二叉树
(2)满二叉树
不增加树的层数的情况下,无法再多添加一个节点的二叉树就是满二叉树
(3)完全二叉树
如果只是删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树
3、森林
n个互不相交的树的集合
3、树的存储
(1)二叉树的存储
1> 连续存储【完全二叉树】
优点:查找某个节点的父节点和子节点
缺点:好用内存空间大
2> 链式存储
(2)一般树的存储
1> 双亲表示法
求父节点方便
2> 孩子表示法
求子节点方便
3> 双亲孩子表示法
求父节点和子节点都很方便
4> 二叉树表示法
把一个普通树转换成二叉树来存储;
具体措施:设法保证任意一个节点左指针域指向它的第一个孩子,右指针域指向它的堂兄弟,只要满足此条件,即可将普通树转换成二叉树,一个普通树转换成的二叉树一定没有右子树。
(3)森林的存储
3、树的操作
1> 遍历
1.先序遍历
先访问根节点,再先序访问左子树,最后访问右子树。
2.中序遍历
先访问左子树,再先序遍历根节点,最后访问右子树。
3.后序遍历
先访问左子树,再先序右子树,最后访问根节点。
4、树的应用
树是数据库中数据组织的一种重要组织形式;
操作系统子父进程的关系本身就是一棵树;
面向对象语言中类的继承关系;
哈夫曼树