题意很长。。。总的来说就是这样的。假设刚开始两个容器分别放的不明物体分别有f[0],f[1]。那么经过一次操作就是就变成f[2]=f[1]+f[0],f[1]。。
然后让你求经过M次之后f[m+1]和f[m]的gcd。。中途执行到N次的时候要f[n+1]要家Y.
做题的时候自己简直是个SB。每天做题都是个SB。。
可以看出操作过程其实就是一个斐波那契。然后相邻的那个斐波那契数gcd是1。然后M-N之后的操作的gcd都是一样的。其实N之前都gcd都是x。然后就是在N的时候加了一个Y。然后gcd就有了变化。所以我们预处理斐波那契到72就可以
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
typedef long long ll;
using namespace std;
const int N=100000+9;
ll f[N];
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
int main()
{
int t;
ll x,n,y,m;
scanf("%d",&t);
int cas=0;
f[0]=1;
f[1]=1;
for(int i=2;i<74;i++)
{
f[i]=f[i-1]+f[i-2];
}
while(t--)
{
cin>>x>>n>>y>>m;
ll N,M;
if(n==0&&m==0)
{
N=x+y;
M=x+y;
}
else
{
N=f[n+1]*x+y;
M=f[n]*x+y;
}
ll ans=gcd(N,M);
printf("Case %d: %lld\n",++cas,ans);
}
return 0;
}