笔记本CPU天梯图(2025/1),3DMark/GB6/PassMark/R23/7-Zip合集

原文地址(高清无水印原图/持续更新/含榜单出处链接):

笔记本CPU天梯图

注意:本文自2024年7月开始月更,至今已更新 7 次,最近一次更新为 2025年1月6日。

其它相关PC硬件性能天梯图

显卡天梯图 (台式+笔记本)

CPU天梯图 (台式+笔记本+部分移动)

Ps:由于太多出站链接有可能被ban,以下榜单出处链接请至原文对应图片底部查看!

PPs:注意本榜单仅含笔记本CPU,如需混合完整榜单(如台式CPU+移动CPU天梯)请访问上方的CPU天梯图。

如看不清,请鼠标右键>在新标签页中打开图片>Ctrl+鼠标滚轮缩放(电脑);或者直接保存在本地查看

3DMark 笔记本CPU性能天梯图

数据来源:3DMark官方发布的CPU性能排行榜,注意该基准测试分数是所有使用相同硬件用户所提交的测试结果的中位数,跟状况好的实机有差异很正常。

注意:样本量较小的冷门CPU,过时CPU将不被统计;另,左侧为默认多线程性能排序,右侧为手动单线程性能排序。

榜单出处(原图/查找/个别支持比较)请至文章顶部原文中对应图片底部访问

PassMark 笔记本CPU游戏性能天梯图

数据来源:PassMark官方的笔记本CPU单线程、Prime 、物理测试分数的综合中位数成绩榜单,老牌基准性能测试平台。

榜单出处(原图/查找/个别支持比较)请至文章顶部原文中对应图片底部访问

Geekbench 6 单核多核笔记本CPU天梯图

数据来源:国外第三方平台CPU-Monkey整理的GeekBench 6 笔记本CPU性能榜,数据主要来自GeekBench官网/评测/网友爆料,部分新U/待发布U跑分或整理自网传消息,仅供参考。(GB6官网更新速度慢,故采用该站数据)

Geekbench 6:相当常见的CPU性能基准测试标准,通过单核和多核测试,模拟实际应用场景(如照片编辑、编译代码、人工智能任务)来测量设备的计算能力,跨平台兼容性好,数据直观。

注意:以下表单仅含笔记本端CPU。

榜单出处(原图/查找/个别支持比较)请至文章顶部原文中对应图片底部访问

7-Zip/Geekbench 6.3笔记本CPU天梯图

数据来源:由国外知名硬件媒体Notebookcheck整理发布的笔记本CPU排名,这里选择了GB6.3、7-Zip性能作为参考。

注意:排序依据为综合性能排序,如需完整版或以其它依据排序请图片末尾原地址;部分空白表示尚未收录,但有其它性能水准证明其在此区间(或为根据其参数规格的合理预估)。

榜单出处(原图/查找/个别支持比较)请至文章顶部原文中对应图片底部访问

Cinebench R23 笔记本CPU天梯图

数据来源:国外第三方平台nanoreview整理发布的Cinebench R23单核多核笔记本CPU性能天梯图,数据主要来自Cinebench官网和网友爆料,更新比较及时,准确性较高。

Cinebench R23: 基于 Cinema 4D 的 3D 渲染引擎,利用实际的工作负载测试单核和多核性能,评估 CPU 的渲染性能及稳定性,广泛用于硬件评测和对比。

注意:排序依据为多核性能,仅包含笔记本CPU。

榜单出处(原图/查找/个别支持比较)请至文章顶部原文中对应图片底部访问

### 笔记本 CPU 性能天梯图 笔记本 CPU 的性能排名和对比图表对于消费者来说是非常重要的参考资料。这些数据基于多个因素综合评估得出,包括但不限于跑分测试、实际应用表现以及用户反馈。 #### 数据来源与更新情况 最新的笔记本 CPU 天梯图涵盖了市场上主要品牌的处理器产品线,并定期根据新发布的型号和技术进步进行调整[^2]。这意味着任何时刻查看此榜单都能获得相对准确的信息来指导购买决策。 #### 关键考量因素 除了单纯的性能指标外,在选择适合自己的笔记本时还需要考虑其他方面的影响: - **散热设计**:高性能的 CPU 往往伴随着较高的功耗和发热水平;良好的散热解决方案能够确保长时间稳定运行并延长设备寿命。 - **电池续航**:高负载下的电力消耗会影响便携式计算机的整体使用便利性和移动性。因此,平衡好性能与能耗的关系至关重要[^3]。 #### 推荐查询方式 为了获取最权威且实时性强的数据资源,建议访问专业的硬件评测网站或论坛,那里不仅有详细的参数比较,还有来自真实用户的评价分享可以帮助更全面地了解各个产品的优缺点。 ```python import requests from bs4 import BeautifulSoup def fetch_cpu_ranking(): url = "https://example.com/cpu-ranking" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') rankings = [] for item in soup.select('.cpu-item'): name = item.find('h2').text.strip() score = float(item.find(class_='score').text.replace(',', '')) rankings.append((name, score)) return sorted(rankings, key=lambda x: x[1], reverse=True) # Example usage of the function to get top CPUs by performance scores. top_cpus = fetch_cpu_ranking()[:5] for cpu_name, perf_score in top_cpus: print(f"{cpu_name}: {perf_score}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值