Datawhale X 李宏毅苹果书 AI夏令营 第五期——深度学习(入门班)Task.02 笔记分享

Task.02 《深度学习详解》- 1.2 了解线性模型(15页+60分钟视频)

Part01.视频笔记

线性模型(Linear Model)也许过于简单,需要更加复杂的模型

Model bias:由线性模型自身导致的限制(无法模拟真实情况)
——需要一个更加复杂、更有弹性的模型

从分段线性曲线到连续曲线

所有的Piecewise Linear Curves(分段线性曲线)都可以由常数加上一系列折线函数之和;
在这里插入图片描述

折线函数_——Hard Sigmoid函数
![[Pasted image 20240828194849.png]]

当我们分段取足够多时,我们可以用分段曲线来近似描述连续曲线;
(分段越多,近似的效果越好)

折线函数的表达式:

利用Sigmoid函数来逼近折线: y = c 1 1 + e − ( b + w x 1 ) = c ∗ s i g m o i d ( b + w x 1 ) y=c\frac{1}{1+e^{-(b+wx_1)}}=c*sigmoid(b+wx_1) y=c1+e(b+wx1)1=csigmoid(b+wx1)

改变参数图像变化
w w w改变斜率(slope)
b b b左右移动
c c c改变高度

y = b + ∑ i c i σ ( b i + w i x 1 ) y=b+\sum_{i}c_i\sigma(b_i+w_ix_1) y=b+iciσ(bi+wix1)
是上图中红色曲线的表达式;

结合课程实例(当日数据受前j天数据影响)的模型:( w i j w_{ij} wij:weight for x j x_j xj for i-th sigmoid)
y = b + ∑ i c i σ ( b i + ∑ j w i j x i ) y = b + \sum_{i}c_i\sigma(b_i+\sum_{j}w_{ij}x_{i}) y=b+iciσ(bi+jwijxi)
![[Pasted image 20240828201728.png]]

本质上是矩阵间乘法运算:
[ r 1 r 2 r 3 ] = [ b 1 b 2 b 3 ] + [ w 11 w 12 w 13 w 21 w 22 w 23 w 31 w 32 w 33 ] + [ x 1 x 2 x 3 ] \begin{bmatrix}r_1\\r_2\\r_3\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}+\begin{bmatrix}w_{11}&w_{12}&w_{13}\\w_{21}&w_{22}&w_{23}\\w_{31}&w_{32}&w_{33}\end{bmatrix}+\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} r1r2r3 = b1b2b3 + w11w21w31w12w22w32w13w23w33 + x1x2x3
然后通过Sigmoid函数: a 1 = σ ( r 1 ) = 1 1 + e − r 1 a_1=\sigma(r_1)=\frac{1}{1+e^{-r_1}} a1=σ(r1)=1+er11
运算流程图示:![[Pasted image 20240828203542.png]]

于是我们得到了一个含有未知参数的函数式(机器学习Step1)

定义损失函数: L ( θ → ) L(\overrightarrow{\theta}) L(θ )

即使换了一个新的模型,损失函数的计算和更新没有变化
新梯度计算(向量) g = ∇ L ( θ 0 ) g=\nabla L(\theta^0) g=L(θ0);更新: θ 1 ← θ 0 − η g \theta^1 \leftarrow \theta^0 - \eta g θ1θ0ηg

  • epoch:遍历完所有的训练数据;update:更新一次参数(往往是训练一个批量的数据更新一次)
从Sigmoid函数到ReLU函数:

Rectified Linear Unit函数(ReLU): y = c × m a x ( 0 , b + w x 1 ) y = c \times max(0, b+wx_1) y=c×max(0,b+wx1)
Hard Sigmoid函数相当于两个ReLU函数的相加——模型变化: y = b + ∑ 2 i c i m a x ( 0 , b i + ∑ j w i j x j ) y=b+\sum_{2i}c_imax(0,b_i+\sum_{j}w_{ij}x_{j}) y=b+2icimax(0,bi+jwijxj)
Activation function(激活函数):Sigmoid函数和ReLU函数

ReLU函数的模型表现:
Linear10 ReLU100 ReLU1000 ReLU
2017-20200.32k0.32k0.28k0.27k
20210.46k0.45k0.43k0.43k
改进模型(将数据进行多层次(Layer)运算):

(每层100ReLU函数,数据与前56天的数据相关)

1 Layer2 Layer3 Layer4 Layer
2017-20200.28k0.18k0.14k0.10k
20210.43k0.39k0.38k0.44k
神经元(Neuron)和神经网络(Neural Network):

Neuron——hidden Layer(隐藏层);Deep:许多隐藏层(Deep Learning)
Overfitting(过拟合):在训练集上表现优秀,但在测试集上表现不佳——模型选择;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值