题目描述
有n堆石子排成一排,第i堆石子有ai个石子。
每次,你可以选择任意相邻的两堆石子进行合并,合并后的石子数量为两堆石子的和,消耗的体力等价于两堆石子中石子数少的那个。
请问,将所有的石子合并成一堆,你所消耗的体力最小是多少?
输入描述:
第一行是一个整数T(1≤T≤20),表示样例的个数。
每个样例的第一行是一个整数n(1≤n≤10000),表示石子堆的数量。
第二行是n个整数ai(1≤ai≤109)
输出描述:
每行输出一个样例的结果。
示例1
输入
2
2
1 2
1
1
输出
1
0
说明
巨大的输入,请使用C风格的输入。
分析
可以发现,不管一共多少堆石子,最后都要合并成一堆,只要将所有石子数加和,最后再减去最大的那一个,就是结果。举个例子,例如我们有5堆石子,每堆石子的数量分别是1,2,5,8,9。这里面最大数是9,我们发现,无论哪一堆石子与9合并,都是其本身对sum做了贡献,所以,先将1与9合并,再将2与9合并。。。也就是将9前面的依次与9合并。这样做得到的sum肯定是最小的,其他方法会有重复利用。
代码
#include<iostream>
#include<cstdio>
#include<string.h>
#include<cmath>
#include<set>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
#include<stack>
#include<stdlib.h>
using namespace std;
typedef long long ll;
const int N=1e4+5;
ll a[N];
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
ll sum=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
sum+=a[i];
}
sort(a+1,a+1+n);
printf("%lld\n",sum-a[n]);
}
return 0;
}