题目
atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠。
一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力...
变换的规则是: 对其某个子序列的每个整数变为: [log_2 (x) + 1] 其中 [] 表示向下取整,
就是对每个数字求以2为底的对数,然后取下整。
例如对序列 3 4 2 操作一次后,这个序列会变成 2 3 2。
drd需要知道,每次这样操作后,序列的和是多少。
【输入格式】
第一行两个正整数 n m 。
第二行 n 个数,表示整数序列,都是正数。
接下来 m 行,每行两个数 L R 表示 atm 这次操作的是区间 [L, R],数列序号从1开始。
【输出格式】
输出 m 行,依次表示 atm 每做完一个操作后,整个序列的和。
例如,输入:
3 3
5 6 4
1 2
2 3
1 3
程序应该输出:
10
8
6
【数据范围】
对于 30% 的数据, n, m <= 10^3
对于 100% 的数据, n, m <= 10^5
分析
范围为e5,直接暴力n^2肯定不行。进行5次运算,差不多就可以将10^5运算到2,而log2(2)+1 = 2,对2进行多少次运算还是2,所以可以用线段树。而如果有1的话,因为log2(1)+1 = 1,也不变,所以可以将1变为2,方便我们计算,同时还要注意用cnt记录下有多少个1变成了2,保存差。
代码
#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e5+5;
ll f[N],cnt=0;
struct node{
int left,right;
ll sum;
}tr[N<<2];
void pushup(int m)
{
tr[m].sum=tr[m<<1].sum+tr[m<<1|1].sum;
}
void build(int m,int l,int r)
{
tr[m].left=l;
tr[m].right=r;
if(l==r)
{
scanf("%lld",&tr[m].sum);
if(tr[m].sum==1)
{
tr[m].sum=2;
cnt++;
}
return ;
}
int mid=(l+r)>>1;
build(m<<1,l,mid);
build(m<<1|1,mid+1,r);
pushup(m);
}
void updata(int m,int l,int r)
{
if(tr[m].left>r||tr[m].right<l)//当前区间与要更新区间没有交集
return ;
if(tr[m].sum==(tr[m].right-tr[m].left+1)<<1)//该区间内全部为2
return ;
if(tr[m].left==tr[m].right)
{
tr[m].sum=f[tr[m].sum];
return ;
}
int mid=(tr[m].left+tr[m].right)>>1;
if(r<=mid)
updata(m<<1,l,r);
else if(l>mid)
updata(m<<1|1,l,r);
else
{
updata(m<<1,l,mid);
updata(m<<1|1,mid+1,r);
}
pushup(m);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<N;i++)//计算每个数的log
f[i]=(ll)(log2(i)+1);
build(1,1,n);
for(int i=0;i<m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
updata(1,l,r);
printf("%lld\n",tr[1].sum-cnt);
}
return 0;
}