饭卡
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 15886 Accepted Submission(s): 5505
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
第一行为正整数n,表示菜的数量。n<=1000。
第二行包括n个正整数,表示每种菜的价格。价格不超过50。
第三行包括一个正整数m,表示卡上的余额。m<=1000。
n=0表示数据结束。
1 50 5 10 1 2 3 2 1 1 2 3 2 1 50 0
-45 32
01背包问题,首先拿出5元买最贵的东西,那接下来就是背包容量m-5,物品数量n-1 的01背包问题了。
状态转移方程为:f[j]=max(f[j],f[j-price[i]]+price[i]) , f[j]表示买前i件物品,预算为j时的最大花销
为了好弄,我把最贵的移到数组尾部。
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int cmp(int a,int b){
return a<b;
}
int main(int argc, char *argv[])
{
int n,V,dp[1111];
int v[1111],price[1111];
while(cin>>n){
if(n==0) break;
int i,j;
for(i=0;i<n;i++) cin>>v[i];
cin>>V;
if(V<5) {
cout<<V<<endl;
continue;
}
int ma=0,num;
sort(v,v+n,cmp);
memset(dp,0,sizeof(dp));
for(i=0;i<n;i++) price[i]=v[i];
V-=5;
for(i=0;i<n-1;i++){
for(j=V;j-v[i]>=0;j--){
if(dp[j]<dp[j-v[i]]+price[i]) dp[j]=dp[j-v[i]]+price[i];
}
}
cout<<V+5-dp[V]-price[n-1]<<endl;
}
return 0;
}