马走日__递归

B:马走日


总时间限制: 
1000ms 
内存限制: 
1024kB
描述

马在中国象棋以日字形规则移动。

请编写一段程序,给定n*m大小的棋盘,以及马的初始位置(x,y),要求不能重复经过棋盘上的同一个点,计算马可以有多少途径遍历棋盘上的所有点。

输入
第一行为整数T(T < 10),表示测试数据组数。
每一组测试数据包含一行,为四个整数,分别为棋盘的大小以及初始位置坐标n,m,x,y。(0<=x<=n-1,0<=y<=m-1, m < 10, n < 10)
输出
每组测试数据包含一行,为一个整数,表示马能遍历棋盘的途径总数,0为无法遍历一次。
样例输入
1
5 4 0 0
样例输出
马走日或田是一种经典的二维棋盘路径问题,也称为八皇后问题变种。在这个问题中,目标是在给定的田字格(通常是8x8的棋盘)上找到一种方案,让“马”(可以看作像L形移动的棋子)从左上角走到右下角,每一步只能向右、向下,或者向右再向下移动一格,同时避免马踩到其他马的位置。 在C++中解决这个问题,通常会使用回溯算法(Backtracking)。你可以创建一个二维数组来表示棋盘状态,用0表示空位,1表示已经有马走过的位置。然后递归地尝试所有可能的移动,如果发现无法到达目的地或者当前位置已经被占用,就回溯到上一个位置继续尝试。当找到一条解决方案时,就可以结束搜索。 以下是简化版的C++代码框架: ```cpp #include <vector> using namespace std; bool isSafe(vector<vector<int>>& board, int row, int col, int targetRow, int targetCol) { // 检查行和列是否冲突 return board[row][col] == 0 && (row != targetRow || abs(row - targetRow) != abs(col - targetCol)); } void solve(int row, int col, vector<vector<int>>& board, int targetRow, int targetCol) { if (row == targetRow && col == targetCol) { // 如果到达目标,打印路径或返回true cout << "Solution found!" << endl; return; } // 试图向右和向下移动 if (isSafe(board, row, col + 1, targetRow, targetCol)) { board[row][col + 1] = 1; solve(row, col + 1, board, targetRow, targetCol); board[row][col + 1] = 0; // 回溯 } if (isSafe(board, row + 1, col, targetRow, targetCol)) { board[row + 1][col] = 1; solve(row + 1, col, board, targetRow, targetCol); board[row + 1][col] = 0; // 回溯 } } int main() { // 初始化棋盘和目标位置 vector<vector<int>> board(8, vector<int>(8, 0)); // ... (设置起始位置) int targetRow = 7, targetCol = 0; solve(0, 0, board, targetRow, targetCol); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值