题目描述
有一个 n × m n \times m n×m 的棋盘,在某个点 ( x , y ) (x, y) (x,y) 上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步。
输入格式
输入只有一行四个整数,分别为 n , m , x , y n, m, x, y n,m,x,y。
输出格式
一个 n × m n \times m n×m 的矩阵,代表马到达某个点最少要走几步(不能到达则输出 − 1 -1 −1)。
样例 #1
样例输入 #1
3 3 1 1
样例输出 #1
0 3 2
3 -1 1
2 1 4
提示
数据规模与约定
对于全部的测试点,保证 1 ≤ x ≤ n ≤ 400 1 \leq x \leq n \leq 400 1≤x≤n≤400, 1 ≤ y ≤ m ≤ 400 1 \leq y \leq m \leq 400 1≤y≤m≤400。
解题思路:
本题要求是找到到达每个点的最少步数
若对广度优先搜索(Breadth First Search)有所了解,则马上就会发现,广度优先搜索第一次到达所需的步数即为所要求的最小步数,那么我们需要做的就是用BFS去遍历每一个能够到达的点
这里进一步思考,可以认识到我们无需取消标记,也就是说我们没有递归返回操作
同时认识到数据量较大,容易发生爆栈
那么我们就可以用不定次数循环也就是while循环来实现广度优先搜索
接下来说明如何实现广度优先搜索
首先进行准备工作
创建一个队列,用于广度优先搜索
创建一个二维数组,用于存储到达每个点的最少步数
再创建一个二维数组,用于防止重复到达格子
再再创建一个二维数组,用于存储马能走的八种方向
准备工作完成
queue<node>bfs_queue;
int step_map[400][400] = { 0 };//用于记录到达每一个格子的步数
bool book_map[400][400] = { 0 };//用于判断是否重复到达
int step[8][2] =//大方向按照右、下、左、上的顺序,对于每个大方向,先上后下,先左后右
{
{-1, 2},
{1, 2},
{2, -1},
{2, 1},
{-1, -2},
{1, -2},
{-2, -1},
{-2, 1}
};
循环条件就是!bfs_queue.empty()
,如果进一步强化条件,可以加上一个&& sum != N * M
接下来实现循环体
首先我们要尝试八个方向,判断每次尝试是否成功,若不成功,则尝试下一个方向
若成功,则将该方向入队,存储当前到达该位置需要的步数,标记该位置为已走过
八个方向尝试完毕后,不要忘记将队首出队
然后重复以上步骤即可,循环体实现完毕
while (!bfs_queue.empty() && sum != M * N)
{
//循环主体
for (int i = 0; i < 8; i++)//尝试八个方向
{
temp_node.m_x = bfs_queue.front().m_x + step[i][0];
temp_node.m_y = bfs_queue.front().m_y + step[i][1];
if (temp_node.m_x < 0 || temp_node.m_x > N - 1 || temp_node.m_y < 0 || temp_node.m_y > M - 1)//若出界,则尝试下一个方向
{
continue;
}
else if (book_map[temp_node.m_x][temp_node.m_y])//若走过,则尝试下一个方向
{
continue;
}
bfs_queue.push(temp_node);
step_map[temp_node.m_x][temp_node.m_y] = step_map[bfs_queue.front().m_x][bfs_queue.front().m_y] + 1;//记录到达这个格子所需的步数,即为最小步数
book_map[temp_node.m_x][temp_node.m_y] = true;//标记已走过
sum++;
}
bfs_queue.pop();//八个方向尝试完毕,队首出队
}
至此,本题核心结题实现完毕
应该不会有人被输出卡住了吧(小声),只要”设置宽度为5+左对齐“就好啦
#include <iomanip>
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
if (step_map[i][j] == 0)//将未到达的点修改为-1
{
if(i != start_x || j != start_y)//注意排除起点
{
step_map[i][j] = -1;
}
}
cout << setw(5) << setiosflags(ios::left) << step_map[i][j];
}
cout << endl;
}
那么,本题的完整代码如下
#include <iostream>
#include <iomanip>
#include <queue>
using namespace std;
struct node
{
int m_x;
int m_y;
};
queue<node>bfs_queue;
int step_map[400][400] = { 0 };//用于记录到达每一个格子的步数
bool book_map[400][400] = { 0 };//用于判断是否重复到达
int step[8][2] =//大方向按照右、下、左、上的顺序,对于每个大方向,先上后下,先左后右
{
{-1, 2},
{1, 2},
{2, -1},
{2, 1},
{-1, -2},
{1, -2},
{-2, -1},
{-2, 1}
};
int main()
{
struct node temp_node;
int N, M, start_x, start_y, sum = 0;//sum用于记录已经走过的格子数量
cin >> N >> M;
cin >> start_x >> start_y;
temp_node.m_x = --start_x, temp_node.m_y = --start_y;
bfs_queue.push(temp_node);//读入起始位置
step_map[temp_node.m_x][temp_node.m_y] = 0;
book_map[temp_node.m_x][temp_node.m_y] = 1;//注意要标记起点为已走过
sum++;
while (!bfs_queue.empty() && sum != M * N)
{
//循环主体
for (int i = 0; i < 8; i++)//尝试八个方向
{
temp_node.m_x = bfs_queue.front().m_x + step[i][0];
temp_node.m_y = bfs_queue.front().m_y + step[i][1];
if (temp_node.m_x < 0 || temp_node.m_x > N - 1 || temp_node.m_y < 0 || temp_node.m_y > M - 1)//若出界,则尝试下一个方向
{
continue;
}
else if (book_map[temp_node.m_x][temp_node.m_y])//若走过,则尝试下一个方向
{
continue;
}
bfs_queue.push(temp_node);
step_map[temp_node.m_x][temp_node.m_y] = step_map[bfs_queue.front().m_x][bfs_queue.front().m_y] + 1;//记录到达这个格子所需的步数,即为最小步数
book_map[temp_node.m_x][temp_node.m_y] = true;//标记已走过
sum++;
}
bfs_queue.pop();//八个方向尝试完毕,队首出队
}
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
if (step_map[i][j] == 0)//将未到达的点修改为-1
{
if(i != start_x || j != start_y)//注意排除起点
{
step_map[i][j] = -1;
}
}
cout << setw(5) << setiosflags(ios::left) << step_map[i][j];
}
cout << endl;
}
return 0;
}