Prim算法
void prime()
{
int i,j,min,mindis=0,next;
memset(tree,0,sizeof(tree));
for(i=1;i<=point;i++)
{
lowdis[i]=map[begin][i];//用lowdis[]数组记录下从起点到剩下所有点的距离
}
tree[begin]=1;//标记起点(即最小生成树中的点)
for(i=1;i<point;i++)
{
min=INF;
for(j=1;j<=point;j++)
{
if(!tree[j]&&min>lowdis[j])
{
min=lowdis[j];//求出从当前起点到其余所有点的距离中最短的
next=j;
}
}
mindis+=min;//记录下整条最小树的长度
tree[next]=1;
for(j=1;j<=point;j++)
{
if(!tree[j]&&lowdis[j]>map[next][j])
lowdis[j]=map[next][j];//更新lowdis[]数组
}
}
printf("%d\n",mindis);
}
kruskal算法
#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
#include<fstream>
using namespace std;
const int MAXN=505;//最大点数
const int MAXM=250005;//最大边数
int F[MAXN];//并查集使用
struct Edge
{
int u,v,w;
}edge[MAXM];//储存边的信息,包括起点/终点/权值
int tol;//边数,加边前赋值为0
void addedge(int u,int v,int w)
{
edge[tol].u=u;
edge[tol].v=v;
edge[tol++].w=w;
}
bool cmp(Edge a,Edge b)//排序函数,边按照权值从小到大排序
{
return a.w<b.w;
}
int Find(int x)
{
if(F[x]==-1)
return x;
else
return F[x]=Find(F[x]);
}
int Kruskal(int n)//传入点数,返回最小生成树的权值,如果不连通返回-1
{
memset(F,-1,sizeof(F));
sort(edge,edge+tol,cmp);
int cnt=0;//计算加入的边数
int ans=0;
for(int i=0;i<tol;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
int t1=Find(u);
int t2=Find(v);
if(t1!=t2)
{
ans+=w;
F[t1]=t2;
cnt++;
}
if(cnt==n-1)
break;
}
if(cnt<n-1)
return -1;//不连通
else
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
cin>>T;
int n;
int c;
while(T--)
{
cin>>n;
tol=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin>>c;
addedge(i,j,c);
}
}
cout<<Kruskal(n)<<endl;
}
return 0;
}