1000亿以内的素数统计(Meisell-Lehmer算法)

原创 2016年09月19日 09:10:10
今年沈阳有个素数计数的题,但是数据到了1e11,大概用Meisell-Lehmer能跑到2、3秒的样子,但是据说还有一种Deleglise Rivat的算法特别快,大概1e16差不多才3、4秒的样子,但是网上没有找到板子,所以就发一个Meisell-Lehmer的模板,1e11内的数差不多都能在5秒内处理完:
#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
const int N = 5e6 + 2;
bool np[N];
int prime[N], pi[N];

int getprime() {
    int cnt = 0;
    np[0] = np[1] = true;
    pi[0] = pi[1] = 0;
    for(int i = 2; i < N; ++i) {
        if(!np[i]) prime[++cnt] = i;
        pi[i] = cnt;
        for(int j = 1; j <= cnt && i * prime[j] < N; ++j) {
            np[i * prime[j]] = true;
            if(i % prime[j] == 0)   break;
        }
    }
    return cnt;
}
const int M = 7;
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
int phi[PM + 1][M + 1], sz[M + 1];
void init() {
    getprime();
    sz[0] = 1;
    for(int i = 0; i <= PM; ++i)  phi[i][0] = i;
    for(int i = 1; i <= M; ++i) {
        sz[i] = prime[i] * sz[i - 1];
        for(int j = 1; j <= PM; ++j) {
            phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
        }
    }
}
int sqrt2(LL x) {
    LL r = (LL)sqrt(x - 0.1);
    while(r * r <= x)   ++r;
    return int(r - 1);
}
int sqrt3(LL x) {
    LL r = (LL)cbrt(x - 0.1);
    while(r * r * r <= x)   ++r;
    return int(r - 1);
}
LL getphi(LL x, int s) {
    if(s == 0)  return x;
    if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
    if(x <= prime[s]*prime[s])   return pi[x] - s + 1;
    if(x <= prime[s]*prime[s]*prime[s] && x < N) {
        int s2x = pi[sqrt2(x)];
        LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
        for(int i = s + 1; i <= s2x; ++i) {
            ans += pi[x / prime[i]];
        }
        return ans;
    }
    return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}
LL getpi(LL x) {
    if(x < N)   return pi[x];
    LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
    for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) {
        ans -= getpi(x / prime[i]) - i + 1;
    }
    return ans;
}
LL lehmer_pi(LL x) {
    if(x < N)   return pi[x];
    int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
    int b = (int)lehmer_pi(sqrt2(x));
    int c = (int)lehmer_pi(sqrt3(x));
    LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;
    for (int i = a + 1; i <= b; i++) {
        LL w = x / prime[i];
        sum -= lehmer_pi(w);
        if (i > c) continue;
        LL lim = lehmer_pi(sqrt2(w));
        for (int j = i; j <= lim; j++) {
            sum -= lehmer_pi(w / prime[j]) - (j - 1);
        }
    }
    return sum;
}

int main() {
    init();
    LL n;
    while(cin >> n) {
        cout << lehmer_pi(n) << endl;
    }
    return 0;
}

版权声明:嗨呀,除了我的心得体会不要乱转之外其他都无所谓啦。 https://blog.csdn.net/Nemaleswang/article/details/52582684

Meisell-Lehmer算法(求1...n范围内的素数个数)

求1...n范围内的素数个数有多少了,如果数据不大的话素筛肯定就可以了,但像HDU-5901中n的范围为10^11肯定就不能素筛了,所以这里介绍Meisell-Lehmer算法,代码颇是复杂,摘的网上...
  • yo_bc
  • yo_bc
  • 2017-05-15 00:38:19
  • 390

素数问题——Meisell-Lehmer算法

素数问题——Meisell-Lehmer算法
  • sexgeek
  • sexgeek
  • 2017-08-12 09:19:18
  • 200

c++求素数个数的几种算法(普通筛、线性筛、Meisell-Lemher模板)

1.普通筛 http://115.231.222.240:8081/JudgeOnline/problem.php?id=1469 数据量较小
  • applewld
  • applewld
  • 2017-05-30 14:38:13
  • 665

HDU 5901 Count primes(Meisell-Lehmer算法)

Description 求111~nnn中有多少素数 Input 多组用例,每组用例输入一整数n(1≤n≤1011)n(1≤n≤1011)n(1\le n\le 10^{11}) Output...
  • V5ZSQ
  • V5ZSQ
  • 2018-04-08 11:22:45
  • 16

Meisell-Lehmer(1000亿以内的素数统计)(模板)

#include using namespace std; typedef long long LL; const int N = 5e6 + 2; bool np[N]; int prime[N],...
  • xj949967574
  • xj949967574
  • 2017-01-15 01:22:24
  • 197

整理:“烫烫烫”与“锟斤拷”的原理

手持两把锟斤拷,口中疾呼烫烫烫。脚踏千朵屯屯屯,笑看万物锘锘锘 解释一下为什么会是这两个东西不是别的= =: 棍斤拷乱码: 源于GBK字符集和Unicode字符集之间的转换问题。Unicod...
  • bat67
  • bat67
  • 2017-08-05 18:20:01
  • 2636

Meisell-Lehmer算法(大素数模板)

比赛的时候搜到了这个模板,居然没细看……看到其他博主有说还有更快的叫Deleglise Rivat的算法,并没有搜到…… 网上搜的模板: #include #include #include #...
  • Mandsnow
  • Mandsnow
  • 2016-09-20 15:28:00
  • 552

hdu 5901 Count primes(Meisell-Lehmer 统计n(很大)以内的素数个数)

两种方法都不懂,留个纪念吧/* ******************************** Author : danmu Created Time : 2016年09月1...
  • define_danmu_primer
  • define_danmu_primer
  • 2016-09-19 18:02:56
  • 389

【模板】Meisell-Lehmer 模板

求1-n范围内的素数个数: #include using namespace std; typedef long long LL; const int N = 5e6 + 2; bool np[...
  • Summer_via
  • Summer_via
  • 2016-09-18 19:33:47
  • 557

ZJCOJ L先生与质数V3/V4 (Meisell-Lehmer算法)

Problem L: L先生与质数V3/V4(应各位菊苣要求) Time Limit:1 Sec  Memory Limit: 128/16 MB Submit:298  Solved:65...
  • qq_36368339
  • qq_36368339
  • 2017-06-03 10:17:32
  • 233
收藏助手
不良信息举报
您举报文章:1000亿以内的素数统计(Meisell-Lehmer算法)
举报原因:
原因补充:

(最多只允许输入30个字)