Meissel-Lehmer 算法是一种高效的计算数论函数 pi(n),它表示不大于 n 的质数个数。该算法的时间复杂度为 O(n^{2/3}),相比较于传统的计算筛法的时间复杂度 O(n \log \log n),可以得到较快的计算速度。
Meissel-Lehmer 算法的核心思想是利用前一次计算的结果,来快速地计算新的 pi(n)。具体的计算步骤如下:
1. 首先,预处理出一系列小质数 p,将 n 区间的整数分成若干个块,每个块内大小为 n^{2/3},从而确定块的数量 m。由于 n 区间内的整数个数为 n,而对于任意一个块大小,块的数量为 n/n^{2/3}=n^{1/3},因此需要约为 n^{1/3} 个块才能覆盖这个区间内的所有数。
2. 对于每个块 j,计算 n 以内的第 p_i 个质数 s_{i,j},可以使用线性筛法进行预处理,在后续的计算过程中用到该值来计算块内的质数个数。
3. 遍历 p 中的每个质数 p_i,从 p_i^2 开始,对于每个块 j,计算 g_{i,j} 表示 [1, n^{2/3}] 范围内 p_i 的倍数在第 j 块中出现的次数,使用前缀和的方法加速计算。最后,对每个块求出在块内不大于 n 的质数数量 c_j:
c_j = s_{1, j} - g_{1,j} + s_{2,j} - g_{2,j} + s_{3,j} - g_{3,j} + s_{4,j} - g_{4,j} + \cdots
其中 s_{i,j} 表示第 j 块内第 i 个质数,g_i,j 表示第 j 块内 [1, n^{2/3}] 范围内 p_i 的倍数的个数。这里采用了插板法的思想,通过加或减一个起始点,转换为了不同质数范围内的情况。
4. 最后,对于每个块 j,可以通过前缀和的方式计算出该块内所有不大于 n 的质数个数:
\pi(n) = c_1 + c_2 + c_3 + \cdots + c_m
Meissel-Lehmer 算法的关键思想是利用前一次的计算结果,快速计算出较大的 \pi(n) 值。然而,该算法并不适用于需要随机访问函数值的算法,因为在每个块内的质数个数是连续的,而且该算法还需要大量的预处理。不过对于一些需要多次访问函数值的计算问题,比如计算欧拉函数,该算法是非常高效的。