卡特兰数

卡特兰数,以下文字内容搬运自这个博客

1 通项公式:h(n)=C(n,2n)/(n+1)=(2n)!/((n!)*(n+1)!)

2递推公式:h(n)=((4*n-2)/(n+1))*h(n-1); h(n)=h(0)*h(n-1)+h(1)*h(n-2)+…+h(n-1)*h(0).

3前几项为:h(0)=1,h(1)=1,h(2)=2,h(3)=5,h(4)=14,h(5)=42,……

4应用场景:

a.括号化问题。
  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
b.出栈次序问题。
  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。

c.将多边行划分为三角形问题。
  (1)将一个凸多边形区域分成三角形区域的方法数?
  (2)类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那   么有多少条可能的道路?
  (3)类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
d.给顶节点组成二叉树的问题。
  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) + + h(n-1)h(0)=h(n))(能构成h(N)个)。

这是一个卡特兰数的模板,而且可以去求大数卡特兰:

#include<stdio.h>
//h( n ) = ( ( 4*n-2 )/( n+1 )*h( n-1 ) );
//*******************************

//打表卡特兰数

//第 n个 卡特兰数存在a[n]中,a[n][0]表示长度;

//注意数是倒着存的,个位是 a[n][1] 输出时注意倒过来。

//*********************************
int a[105][100];
void ktl()
{
    int i,j,yu,len;
    a[2][0]=1;
    a[2][1]=2;
    a[1][0]=1;
    a[1][1]=1;
    len=1;
    for(i=3;i<101;i++)
    {
        yu=0;
        for(j=1;j<=len;j++)
        {
            int t=(a[i-1][j])*(4*i-2)+yu;
            yu=t/10;
            a[i][j]=t%10;
        }   
        while(yu)
        {
            a[i][++len]=yu%10;
            yu/=10;
        }
        for(j=len;j>=1;j--)
        {
            int t=a[i][j]+yu*10;
            a[i][j]=t/(i+1);
            yu = t%(i+1);
        }       
        while(!a[i][len])
        {
            len--;
        }   
        a[i][0]=len;
    }   
}   
int main()
{
    ktl();
    int n;
    while(scanf("%d",&n)!=EOF)
    {
    for(int i=a[n][0];i>0;i--)
        {
            printf("%d",a[n][i]);
        }   
        puts("");
    }   
    return 0;
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值