题目链接:Counting Cliques
题目大意:给你一张n个点,m条边的无向图,问尺寸为s的完全图有多少个,尺寸即为这张完全图有多少个点,完全图是值每两点之间都有边
题目思路:这题吃时间吃的比较紧,想法还是很简单,从某一个点开始dfs,然后每次去dfs与他相连的边,然后如果这个边与之前已经存在完全图里面的边都相连的话(这个用邻接矩阵去判断),这道题最主要的地方是优化,我们可以从1开始遍历比他大的点,2也遍历比它大的点,然后遍历的时候不用去遍历所有点,只遍历与它相连并且编号比他大的点(这个是主要优化),然后还可以有很多的小优化,都写在代码里面了
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 105;
int matrix[maxn][maxn],t,n,m,s;
int que[15],cot,num,degree[maxn];
vector<int>vec[maxn];
template <class T>
inline bool scan_d(T &ret)
{
char c;
int sgn;
if (c = getchar(), c == EOF)
{
return 0; //EOF
}
while (c != '-' && (c < '0' || c > '9'))
{
c = getchar();
}
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9')
{
ret = ret * 10 + (c - '0');
}
ret *= sgn;
return 1;
}
bool check(int x){
if(degree[x] < s-1) return false;
for(int i = 0;i < cot;i++){
if(matrix[x][que[i]] == 0) return false;
}
return true;
}
void dfs(int x){
// for(int i = 0;i < cot;i++)
// cout<<que[i]<<" ";
// cout<<endl;
if(s-cot > n-x) return ;
if(cot == s){
num++;
return ;
}
for(int i = 0;i < vec[x].size();i++){
if(check(vec[x][i])){
que[cot++] = vec[x][i];
dfs(vec[x][i]);
cot--;
}
}
}
int main(){
//scan_d(t);
scanf("%d",&t);
while(t--){
//scan_d(n);scan_d(m);scan_d(s);
scanf("%d",&n);scanf("%d",&m);scanf("%d",&s);
for(int i = 1;i <= 100;i++) vec[i].clear();
cot = 0;
num = 0;
memset(matrix,0,sizeof(matrix));
memset(degree,0,sizeof(degree));
while(m--){
int u,v;
scan_d(u);scan_d(v);
matrix[u][v] = matrix[v][u] = 1;
degree[u]++;
degree[v]++;
if(v > u) vec[u].push_back(v);
else vec[v].push_back(u);
}
for(int i = 1;i <= n-s+1;i++){
if(degree[i] < s-1) continue;
que[cot++] = i;
dfs(i);
cot--;
}
printf("%d\n",num);
}
return 0;
}