Problem Description
一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),借助元素移位的方式,设计一个空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能用一个循环语句实现,不能分成两个部分。
Input
第一行输入整数n,代表下面有n行输入;
之后输入n行,每行先输入整数len与整数m(分别代表本表的元素总数与前半表的元素个数),之后输入len个整数,代表对应顺序表的每个元素。
Output
输出有n行,为每个顺序表前m个元素与后(len-m)个元素交换后的结果
Sample Input
2 10 3 1 2 3 4 5 6 7 8 9 10 5 3 10 30 20 50 80
Sample Output
4 5 6 7 8 9 10 1 2 3 50 80 10 30 20
Hint
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能在一次循环中完成,不能分成两个部分输出。
Source
这个题目的思路是设置一个临时变量,跑一重for循环之后进行变换。
#include<iostream>
#include<stdio.h>
#define MaxSize 100001
typedef int element;
typedef struct List{
int data[MaxSize];
int size;
}list;
void init(list &L,int b){
int i;
for(i = 0 ; i < b;i++){
L.data[i] = 0;
}
L.size = b;
}
void input(list &L){
int i,c;
for(i = 0 ; i < L.size;i++){
scanf("%d",&c);
L.data[i] = c;
}
}
void handle(list &L,int c){
int temp;
int i,j;
for(i = 0 ; i < c ; i++){
temp = L.data[0];
for(j = 0 ; j < L.size - 1; j++){
L.data[j] = L.data[j + 1];
}
L.data[L.size - 1] = temp;
}
}
void output(list &L){
int i;
for(i = 0 ; i < L.size - 1; i++){
printf("%d ",L.data[i]);
}
printf("%d\n",L.data[i]);
}
int main(){
int a,b,c;
list L;
scanf("%d",&a);
while(a--){
scanf("%d",&b);
scanf("%d",&c);
init(L,b);
input(L);
handle(L,c);
output(L);
}
return 0;
}