Redis面试题集锦

Redis面试题集锦

  1. 什么是redis?

答:Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API

  1. Reids的特点

答:  1、速度快。用C语言实现的,所有数据存储在内存中以键值对形式保存。

2、持久化所有数据存储在内存中,对数据的更新将异步地保存到磁盘上。

3、支持多种数据结构,支持五种数据结构:StringListSetHashZset

4、支持多种编程语言。JavaphpPythonRubyLuaNode.js

5、功能丰富。除了支持五种数据结构之外,还支持事务、流水线、发布/订阅、消息队列等功能。

6、源码简单,约23000C语言源代码。

7、主从复制

主服务器上只进行写的操作,在从的服务器上进行读的操作

主服务器(master)执行添加、修改、删除,从服务器执行查询。

8、(服务架构)支持高可用和分布式

高可用:使用redis自带的哨兵机制来实现高可用

  1. Redis支持的数据类型

答:包括string(字符串)list(链表)set(集合)zset(sorted set --有序集合)hash(哈希类型)。

  1. Redis是单进程单线程的

答:采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;

  1. 虚拟内存

答:尽量在内存中只保留Keys的数据,这样可以保证数据检索的效率,而Values数据在很少使用的时候则可以被换出到磁盘。在实际的应用中,大约只有10%的Keys属于相对比较常用的键,这样Redis就可以通过虚拟内存将其余不常用的Keys和Values换出到磁盘上,而一旦这些被换出的Keys或Values需要被读取时,Redis则将其再次读回到主内存中。

vm-enabled yes   打开虚拟内存开关

vm-max-memory (bytes)   配置虚拟内存的最大数

vm-pages 134217728  配置Redis将交换文件划分为vm-pages个页

vm-page-size 32    配置每个页所占用的字节,Redis最终可用的交换文件大小为:

vm-pages * vm-page-size

vm-max-threads 4  Redis在对交换文件执行IO操作时所应用的最大线程数量

  1. Redis

答:getLock获取锁,releaseLock释放锁

分布式锁其实可以理解为:控制分布式系统有序的去对共享资源进行操作,通过互斥来保持一致性。

互斥性,安全性,避免死锁,保证加锁与解锁操作是原子性操作

Redis 分布式锁,主要利用SETNX 命令和 GETSET命令。解决高并发。

  1. 读写分离模型

答:概要流程: 

1. slave服务器配置master的连接信息(slaveof属性);

  1.   slave连接上master,发送psync指令

3. master判断是否为全量复制:如果是全量复制,则进入下一步;否则可以看增量复制的子流程。

4. master启动一个后台线程,生成一份RDB快照文件,同时将从客户端收到的所有写命令缓存在内存中。

5. RDB文件生成完毕之后,master会将RDB发送给slave

6. slave收到RDB文件之后,清空自己的旧数据,然后持久化到本地磁盘,再从本地磁盘加载到内存中。

7. 最后salve node保存了RDB文件之后,master会将内存中缓存的写命令发送给slaveslave也会同步这些数据。

8. 如果slave node开启了AOF,那么会立即执行BGREWRITEAOF,重写AOF

 

增量复制子流程:如果全量复制过程中,master-slave网络连接断掉,salve重新连接master时,会触发增量复制;master直接从自己的backlog中获取部分丢失的数据,发送给slave node,默认backlog就是1MBmsater就是根据slave发送的psync中的offset来从backlog中获取数据的

 

断点续传

redis 2.8开始,就支持主从复制的断点续传,如果主从复制过程中,网络连接断掉了,那么可以接着上次复制的地方,继续复制下去,而不是从头开始复制一份

 

master node会在内存中常见一个backlogmasterslave都会保存一个replica offset还有一个master idoffset就是保存在backlog中的。如果masterslave网络连接断掉了,slave会让master从上次的replica offset开始继续复制;如果没有找到对应的offset,那么就会执行一次full resynchronization

 

无磁盘化复制

master在内存中直接创建rdb,然后发送给slave,不会在自己本地落地磁盘了

repl-diskless-sync

repl-diskless-sync-delay,等待一定时长再开始复制,因为要等更多slave重新连接过来

 

过期key处理

slave不会过期key,只会等待master过期key。如果master过期了一个key,或者通过LRU淘汰了一个key,那么会模拟一条del命令发送给slave

 

其他概念

 

主从节点互相都会发送heartbeat信息,master默认每隔10秒发送一次heartbeatsalve node每隔1秒发送一个heartbeat master每次接收到写命令之后,先在内部写入数据,然后异步发送给slave node

 

offset

master会在自身不断累加offsetslave也会在自身不断累加offset

slave每秒都会上报自己的offsetmaster,同时master也会保存每个slaveoffset。主要是masterslave都要知道各自的数据的offset,才能知道互相之间的数据不一致的情况

backlog

master node有一个backlog,默认是1MB大小;master nodeslave node复制数据时,也会将数据在backlog中同步写一份;主要是用来做全量复制中断候的增量复制的

master run id

info server,可以看到master run id

如果根据host+ip定位master node,是不靠谱的,如果master node重启或者数据出现了变化,那么slave node应该根据不同的run id区分,run id不同就做全量复制

如果需要不更改run id重启redis,可以使用redis-cli debug reload命令

psync

从节点使用psyncmaster node进行复制,psync runid offset

master node会根据自身的情况返回响应信息,可能是FULLRESYNC runid offset触发全量复制,可能是CONTINUE触发增量复制

  1. 数据分片模型

答:Redis的分片(Sharding或者Partitioning)技术是指将数据分散到多个Redis实例中的方法,分片之后,每个redis拥有一部分原数据集的子集。在数据量非常大时,这种技术能够将数据量分散到若干主机的redis实例上,进而减轻单台redis实例的压力。分片技术能够以更易扩展的方式使用多台计算机的存储能力(这里主要指内存的存储能力)和计算能力:

1)从存储能力的角度,分片技术通过使用多台计算机的内存来承担更大量的数据,如果没有分片技术,那么redis的存储能力将受限于单台主机的内存大小。

2 从计算能力的角度,分片技术通过将计算任务分散到多核或者多台主机中,能够充分利用多核、多台主机的计算能力。
 

  1. Redis的回收策略

答:

可以选择最近最少使用的数据全部淘汰掉,剩下的就是经常访问的数据,都是热点数据

redis.conf 里面有个配置策略 maxmemory-policy ,它有几个可选值:

noeviction 默认的策略,即当内存使用达到阈值的时候,所有引起申请内存的命令都会报错;

allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

适用场景: 如果我们的应用对缓存的访问都是相对热点数据,就可以选择这个策略;

allkeys-random:随机移除某个key

适合的场景:如果我们的应用对于缓存key的访问概率相等,则可以使用这个策略。

从已经设置了过期时间的key中去选择

volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰。

volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰。

volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰;适合场景:这种策略使我们可以向Redis提示哪些key更适合被淘汰,可以自己控制

  1. 使用Redis有哪些好处,哪些缺点?

答:

(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)

(2) 支持丰富数据类型,支持string,list,set,sorted set,hash

(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

(5) 支持数据持久化,支持AOF和RDB两种持久化方式

(6) 支持主从复制,主机会自动将数据同步到从机,可以进行读写分离。

缺点:

(1) Redis不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复。

(2) 主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性。

(3) Redis的主从复制采用全量复制,复制过程中主机会fork出一个子进程对内存做一份快照,并将子进程的内存快照保存为文件发送给从机,这一过程需要确保主机有足够多的空余内存。若快照文件较大,对集群的服务能力会产生较大的影响,而且复制过程是在从机新加入集群或者从机和主机网络断开重连时都会进行,也就是网络波动都会造成主机和从机间的一次全量的数据复制,这对实际的系统运营造成了不小的麻烦。

(4) Redis较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费。

  1. redis相比memcached有哪些优势?

答:

(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型

(2) redis的速度比memcached快很多

(3) redis可以持久化其数据

  1. redis常见性能问题和解决方案

答:

(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件

(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次

(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内

(4) 尽量避免在压力很大的主库上增加从库

(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...

这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

  1. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

答:redis 提供 6种数据淘汰策略:

volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

no-enviction(驱逐):禁止驱逐数据

  1. Memcache与Redis的区别都有哪些?

答:

1)、存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,这样能保证数据的持久性。

2)、数据支持类型 Memcache对数据类型支持相对简单。 Redis有复杂的数据类型。

3)、使用底层模型不同 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。 Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

  1. Redis 常见的性能问题都有哪些?如何解决?

答:1.master写内存快照,save命令调度rdbsave函数,会阻塞主线程的工程,当快照比较大的时候对性能的影响是非常大的,会间断性暂停服务 。所以master最好不要写内存快照。

2.master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响master重启时的恢复速度。master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个slave开启AOF备份数据,策略每秒为同步一次。

3.master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂的服务暂停现象。

4.redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,slavemaster最好在同一个局域网内。

 

  1.  Redis有哪些数据结构?

字符串String、字典Hash、列表List、集合Set、有序集合SortedSet

如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLogGeoPub/Sub

  1.  使用过Redis分布式锁么,它是什么回事?

先拿setnx来争抢锁,抢到之后,再用expire给锁加一个过期时间防止锁忘记了释放。

这时候对方会告诉你说你回答得不错,然后接着问如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?

这时候你要给予惊讶的反馈:唉,是喔,这个锁就永远得不到释放了。紧接着你需要抓一抓自己得脑袋,故作思考片刻,好像接下来的结果是你主动思考出来的,然后回答:我记得set指令有非常复杂的参数,这个应该是可以同时把setnxexpire合成一条指令来用的!对方这时会显露笑容,心里开始默念:摁,这小子还不错。

jedis.set(String key, String value, String nx, String expx, int time),这个set()方法一共有五个形参:

第一个为key,我们使用key来当锁,因为key是唯一的。

第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。

第三个为nx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;

第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。

第五个为time,与第四个参数相呼应,代表key的过期时间。

总的来说,执行上面的set()方法就只会导致两种结果:1. 当前没有锁(key不存在),那么就进行加锁操作,并对锁设置个有效期,同时value表示加锁的客户端。2. 已有锁存在,不做任何操作。

3. 假如Redis里面有1亿个key,其中有10wkey是以某个固定的已知的前缀开头的,如果将它们全部找出来?

使用keys指令可以扫出指定模式的key列表:keys pre*

  1.  如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?

这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。

  1.  使用过Redis做异步队列么,你是怎么用的?

一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。

如果对方追问可不可以不用sleep呢?list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。

如果对方追问能不能生产一次消费多次呢?使用pub/sub主题订阅者模式,可以实现1:N的消息队列。

如果对方追问pub/sub有什么缺点?在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。redispub/sub缺陷

  1.  如果对方追问redis如何实现延时队列?

使用有序集合,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。

  1.  如果有大量的key需要设置同一时间过期,一般需要注意什么

如果大量的key过期时间设置的过于集中,到过期的那个时间点,redis可能会出现短暂的卡顿现象。一般需要在时间上加一个随机值,使得过期时间分散一些。

  1.  Redis如何做持久化的?

8.1. RDB做镜像全量持久化,AOF做增量持久化。

RDB持久化也分两种:SAVEBGSAVE

SAVE是阻塞式的RDB持久化,当执行这个命令时redis的主进程把内存里的数据库状态写入到RDB文件中,直到该文件创建完毕的这段时间内redis将不能处理任何命令请求;

BGSAVE属于非阻塞式的持久化,它会创建一个子进程专门去把内存中的数据库状态写入RDB文件里,同时主进程还可以处理来自客户端的命令请求。但子进程基本是复制的父进程,这等于两个相同大小的redis进程在系统上运行,会造成内存使用率的大幅增加。

8.2. AOF的持久化是通过命令追加、文件写入和文件同步三个步骤实现的。

reids开启AOF后(redis备份方式默认是RDB),

服务端每执行一次写操作(如setsaddrpush)就会把该条命令追加到一个单独的AOF缓冲区的末尾,这就是命令追加;

然后把AOF缓冲区的内容写入AOF文件里。看上去第二步就已经完成AOF持久化了那第三步是干什么的呢?这就需要从系统的文件写入机制说起:一般我们现在所使用的操作系统,为了提高文件的写入效率,都会有一个写入策略,即当你往硬盘写入数据时,操作系统不是实时的将数据写入硬盘,而是先把数据暂时的保存在一个内存缓冲区里,等到这个内存缓冲区的空间被填满或者是超过了设定的时限后才会真正的把缓冲区内的数据写入硬盘中。也就是说当redis进行到第二步文件写入的时候,从用户的角度看是已经把AOF缓冲区里的数据写入到AOF文件了,但对系统而言只不过是把AOF缓冲区的内容放到了另一个内存缓冲区里而已,之后redis还需要进行文件同步把该内存缓冲区里的数据真正写入硬盘上才算是完成了一次持久化。而何时进行文件同步则是根据配置的appendfsync来进行:appendfsync有三个选项:alwayseverysecno

那如果突然机器掉电会怎样?

取决于aof日志sync属性的配置,如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1s1次,这个时候最多就会丢失1s的数据。

对方追问bgsave的原理是什么?你给出两个词汇就可以了,forkcowfork是指redis通过创建子进程来进行bgsave操作,cow指的是copy on write,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。

Pipeline有什么好处,为什么要用pipeline

可以将多次IO往返的时间缩减为一次,前提是pipeline执行的指令之间没有因果相关性。使用redis-benchmark进行压测的时候可以发现影响redisQPS峰值的一个重要因素是pipeline批次指令的数目。

Redis的同步机制了解么?

Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。

是否使用过Redis集群,集群的原理是什么?

Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。

Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。

  1.  使用redis有哪些好处?

(1) 速度快,因为数据存在内存中,类似于HashMapHashMap的优势就是查找和操作的时间复杂度都是O(1)

(2) 支持丰富数据类型,支持stringlistsetsorted sethash

(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

  1.  redis相比memcached有哪些优势?

(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型

(2) redis的速度比memcached快很多

(3) redis可以持久化其数据 

  1.  redis常见性能问题和解决方案:

1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。

2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。

3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。

4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,SlaveMaster最好在同一个局域网内

  1.  请用Redis和任意语言实现一段恶意登录保护的代码,限制1小时内每用户Id最多只能登录5次。具体登录函数或功能用空函数即可,不用详细写出。

 用列表实现:列表中每个元素代表登陆时间,只要最后的第5次登陆时间和现在时间差不超过1小时就禁止登陆.java(jedis)写的代码如下:

 实现方式有很多,比如说使用redis的使用redis的列表实现一个队列,

package com.learn.redis;

 

import redis.clients.jedis.Jedis;

 

import java.util.List;

 

/**

 * Created by on 2019/1/2.

 * 描述:用Redis和任意语言实现一段恶意登录保护的代码,限制1小时内每用户Id最多只能登录5

 */

public class LoginValidate {

    final static int EXPIRE_TIME = 10;一个周期,10s,设置成10s是因为方便测试,可以改成1h

    final static int MOST_TIMES_IN_TIME_LIMIT = 5;//一个周期内最多的操作次数

    public static void main(String[] args) {

        Jedis jedis = new Jedis("localhost",6379);

        jedis.select(15);

        String userId = "ling1234";

 

        loginValidateWithQueue(jedis,userId);

        loginValidateWithQueue(jedis,userId);

        loginValidateWithQueue(jedis,userId);

        try {

            Thread.sleep(5000);

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

        loginValidateWithQueue(jedis,userId);

        loginValidateWithQueue(jedis,userId);

        loginValidateWithQueue(jedis,userId);

        try {

            Thread.sleep(6000);

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

        loginValidateWithQueue(jedis,userId);

        loginValidateWithQueue(jedis,userId);

        List<String> values=jedis.lrange(userId,0,-1);

        for (int i = 0; i < values.size(); i++) {

            System.out.printf(values.get(i) + "\n");

        }

        jedis.del(userId);

        jedis.close();

    }

 

    /**

     * Redis和任意语言实现一段恶意登录保护的代码,限制1小时内每用户Id最多只能登录5

     * @param jedis

     * @param userId

     * @return

     */

    public static boolean loginValidateWithQueue(Jedis jedis,String userId){

        Long currentTime = System.currentTimeMillis() /1000;

        if (jedis.llen(userId) < MOST_TIMES_IN_TIME_LIMIT){

            jedis.rpush(userId,currentTime.toString());

            System.out.println(currentTime + " 登入成功!" + jedis.llen(userId));

        }else{

            String lastFourthTimeStr = jedis.lindex(userId,0);

            Long lastFourthTime = Long.valueOf(lastFourthTimeStr);

            if (currentTime - lastFourthTime <= EXPIRE_TIME){

                System.out.println(EXPIRE_TIME + " 秒内只能操作" + MOST_TIMES_IN_TIME_LIMIT + " ");

                return false;

            }else{

                jedis.lpop(userId);

                jedis.rpush(userId,currentTime.toString());

                System.out.println(currentTime + " 登入成功!" + jedis.llen(userId));

                return true;

            }

        }

        return true;

    }

}

 

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172

结果如下:

1546437341 登入成功!1

1546437341 登入成功!2

1546437341 登入成功!3

1546437346 登入成功!4

1546437346 登入成功!5

10 秒内只能操作5                 //5s

1546437352 登入成功!5        //11s后,又能开始登入

1546437352 登入成功!5

1546437341

1546437346

1546437346

1546437352

1546437352

12345678910111213

  1.  为什么redis需要把所有数据放到内存中?

Redis为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以redis具有快速和数据持久化的特征。如果不将数据放在内存中,磁盘I/O速度为严重影响redis的性能。在内存越来越便宜的今天,redis将会越来越受欢迎。

 如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值。

  1.  Redis是单进程单线程的

redis利用队列技术将并发访问变为串行访问,消除了传统数据库串行控制的开销。

  1.  redis的并发竞争问题如何解决?

Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。对此有2种解决方法:

1).客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized

2).服务器角度,利用setnx实现锁。

注:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redissetnx命令,但是需要注意一些问题。

  1.  redis事物的了解CAS(check-and-set 操作实现乐观锁 )?

和众多其它数据库一样,Redis作为NoSQL数据库也同样提供了事务机制。在Redis中,MULTI/EXEC/DISCARD/WATCH这四个命令是我们实现事务的基石。相信对有关系型数据库开发经验的开发者而言这一概念并不陌生,即便如此,我们还是会简要的列出Redis中事务的实现特征:

 1). 在事务中的所有命令都将会被串行化的顺序执行,事务执行期间,Redis不会再为其它客户端的请求提供任何服务,从而保证了事物中的所有命令被原子的执行。

 2). 和关系型数据库中的事务相比,在Redis事务中如果有某一条命令执行失败,其后的命令仍然会被继续执行。

 3). 我们可以通过MULTI命令开启一个事务,有关系型数据库开发经验的人可以将其理解为"BEGIN TRANSACTION"语句。在该语句之后执行的命令都将被视为事务之内的操作,最后我们可以通过执行EXEC/DISCARD命令来提交/回滚该事务内的所有操作。这两个Redis命令可被视为等同于关系型数据库中的COMMIT/ROLLBACK语句。

 4). 在事务开启之前,如果客户端与服务器之间出现通讯故障并导致网络断开,其后所有待执行的语句都将不会被服务器执行。然而如果网络中断事件是发生在客户端执行EXEC命令之后,那么该事务中的所有命令都会被服务器执行。

 5). 当使用Append-Only模式时,Redis会通过调用系统函数write将该事务内的所有写操作在本次调用中全部写入磁盘。然而如果在写入的过程中出现系统崩溃,如电源故障导致的宕机,那么此时也许只有部分数据被写入到磁盘,而另外一部分数据却已经丢失。

Redis服务器会在重新启动时执行一系列必要的一致性检测,一旦发现类似问题,就会立即退出并给出相应的错误提示。此时,我们就要充分利用Redis工具包中提供的redis-check-aof工具,该工具可以帮助我们定位到数据不一致的错误,并将已经写入的部分数据进行回滚。修复之后我们就可以再次重新启动Redis服务器了。

  1.  WATCH命令和基于CAS的乐观锁:

Redis的事务中,WATCH命令可用于提供CAS(check-and-set)功能。假设我们通过WATCH命令在事务执行之前监控了多个Keys,倘若在WATCH之后有任何Key的值发生了变化,EXEC命令执行的事务都将被放弃,同时返回Null multi-bulk应答以通知调用者事务执行失败。例如,我们再次假设Redis中并未提供incr命令来完成键值的原子性递增,如果要实现该功能,我们只能自行编写相应的代码。其伪码如下:

  val = GET mykey

  val = val + 1

  SET mykey $val

  以上代码只有在单连接的情况下才可以保证执行结果是正确的,因为如果在同一时刻有多个客户端在同时执行该段代码,那么就会出现多线程程序中经常出现的一种错误场景–竞态争用(race condition)。比如,客户端AB都在同一时刻读取了mykey的原有值,假设该值为10,此后两个客户端又均将该值加一后setRedis服务器,这样就会导致mykey的结果为11,而不是我们认为的12。为了解决类似的问题,我们需要借助WATCH命令的帮助,见如下代码:

  WATCH mykey

  val = GET mykey

  val = val + 1

  MULTI

  SET mykey $val

  EXEC

  和此前代码不同的是,新代码在获取mykey的值之前先通过WATCH命令监控了该键,此后又将set命令包围在事务中,这样就可以有效的保证每个连接在执行EXEC之前,如果当前连接获取的mykey的值被其它连接的客户端修改,那么当前连接的EXEC命令将执行失败。这样调用者在判断返回值后就可以获悉val是否被重新设置成功。

  1.  redis持久化的几种方式

1).快照(snapshots

  缺省情况情况下,Redis把数据快照存放在磁盘上的二进制文件中,文件名为dump.rdb。你可以配置Redis的持久化策略,例如数据集中每N秒钟有超过M次更新,就将数据写入磁盘;或者你可以手工调用命令SAVEBGSAVE

工作原理

  . Redis forks.

  . 子进程开始将数据写到临时RDB文件中。

  . 当子进程完成写RDB文件,用新文件替换老文件。

  . 这种方式可以使Redis使用copy-on-write技术。

2).AOF

  快照模式并不健壮,当系统停止,或者无意中Rediskill掉,最后写入Redis的数据就会丢失。这对某些应用也许不是大问题,但对于要求高可靠性的应用来说,Redis就不是一个合适的选择。Append-only文件模式是另一种选择。你可以在配置文件中打开AOF模式。

3).虚拟内存方式

 当你的key很小而value很大时,使用VM的效果会比较好.因为这样节约的内存比较大.

 当你的key不小时,可以考虑使用一些非常方法将很大的key变成很大的value,比如你可以考虑将key,value组合成一个新的value.

 vm-max-threads这个参数,可以设置访问swap文件的线程数,设置最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的.可能会造成比较长时间的延迟,但是对数据完整性有很好的保证.

  1.  redis的缓存失效策略和主键失效机制

作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略.

  在Redis当中,有生存期的key被称为expire。在创建缓存时,要为给定的key设置生存期,当key过期的时候(生存期为0),它可能会被删除,并不是立刻删除,因为删除过期时间有三种不同的策略,参见博客redis过期键删除策略。

  1).影响生存时间的一些操作

  生存时间可以通过使用 DEL 命令来删除整个 key 来移除,或者被 SET 命令覆盖原来的数据,也就是说,修改key对应的value和使用另外相同的keyvalue来覆盖以后,当前数据的生存时间不同。

  比如说,对一个 key 执行INCR命令,对一个列表进行LPUSH命令,或者对一个哈希表执行HSET命令,这类操作都不会修改 key 本身的生存时间。另一方面,如果使用RENAME对一个 key 进行改名,那么改名后的 key的生存时间和改名前一样。

  RENAME命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。使用PERSIST命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key

  2).如何更新生存时间

  可以对一个已经带有生存时间的 key 执行EXPIRE命令,新指定的生存时间会取代旧的生存时间。过期时间的精度已经被控制在1ms之内,主键失效的时间复杂度是O1),EXPIRETTL命令搭配使用,TTL可以查看key的当前生存时间。设置成功返回 1;当 key 不存在或者不能为 key 设置生存时间时,返回 0

  3).最大缓存配置

  在 redis 中,允许用户设置最大使用内存大小server.maxmemory,默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。

redis 提供 6种数据淘汰策略:

  . volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

  . volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

  . volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

  . allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

  . allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

  . no-enviction(驱逐):禁止驱逐数据

  注意这里的6种机制,volatileallkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lruttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。

  使用策略规则:

  1、如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru

  2、如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random

  三种数据淘汰策略:

  ttlrandom比较容易理解,实现也会比较简单。主要是Lru最近最少使用淘汰策略,设计上会对key 按失效时间排序,然后取最先失效的key进行淘汰

 

  1.  redis 最适合的场景

Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis?

如果简单地比较RedisMemcached的区别,大多数都会得到以下观点:

  1 Redis不仅仅支持简单的k/v类型的数据,同时还提供listsetzsethash等数据结构的存储。

  2 Redis支持数据的备份,即master-slave模式的数据备份。

  3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。

(1).会话缓存(Session Cache

最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。

(2).全页缓存(FPC

除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC

  再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。

  此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。

(3).队列

Reids在内存存储引擎领域的一大优点是提供 list set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list push/pop 操作。

  如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。

(4).排行榜/计数器

Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户我们称之为“user_scores”,我们只需要像下面一样执行即可:当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:

 

ZRANGE user_scores 0 10 WITHSCORES

 

Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。

(5).发布/订阅

最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值