Problem 1. Year of the Cow
问题描述
Farmer John 的奶牛们得知最近正在庆祝牛年的到来时十分兴奋。牛年总是奶牛们的最爱。
我们知道,中国历法中每一年所对应的生肖遵循 12 年的周期:Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig, Rat(牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪、鼠),然后回到牛。
奶牛 Bessie 自豪地说她是在许多年前的一个牛年出生的。她的朋友 Elsie 想要知道她与 Bessie 出生相差多少年,并且希望你能够通过查看农场上若干奶牛出生年份之间的关系来帮助她推算。
输入格式
输入的第一行包含一个整数 N ( 1 ≤ N ≤ 100 N(1≤N≤100 N(1≤N≤100)。以下每行包含一个 8 个单词的短语,指定了两头奶牛的出生年份之间的关系,格式为"Mildred born in previous Dragon year from Bessie"(Mildred 在 Bessie 出生的前一个龙年出生),或"Mildred born in next Dragon year from Bessie"(Mildred 在 Bessie 出生的后一个龙年出生)。
最后一个单词是农场上某一头奶牛的名字,为 “Bessie” 或一头已经在之前的输入中出现过的奶牛。
第一个单词是农场上某一头奶牛的名字,不为 “Bessie” 且未在之前的输入中出现过。所有的奶牛名字不超过 10 个字符,且仅包含字符 a…z 或 A…Z。
第 5 个单词是上述十二生肖之一。
第 4 个单词是 “previous”(之前)或 “next”(之后)之一。例如,如果短语为 “Mildred born in previous Dragon year from Bessie”,则 Mildred 的出生年份为最为接近且严格处于 Bessie 的出生年份之前(不等于)的龙年。
输出格式
输出 Bessie 和 Elsie 的出生年份之间相差的年数。输入保证可以通过给定的信息求出结果。
输入样例
4
Mildred born in previous Dragon year from Bessie
Gretta born in previous Monkey year from Mildred
Elsie born in next Ox year from Gretta
Paulina born in next Dog year from Bessie
输出样例
12
样例说明
在以上的输入中,
Elsie 在 Bessie 之前 12 年出生。
Mildred 在 Bessie 之前 9 年出生。
Gretta 在 Bessie 之前 17 年出生。
Paulina 在 Bessie 之前 9 年出生。
解题思路
我的思路就是给牛Bessie设置一个"假"的年份,然后通过模拟求出其他所有牛的出生日期,然后将两个牛的差的绝对值输出即可,
虽然我这题调了三个小时QWQ
方法
模拟(技巧)+map(红黑树)
代码展示
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n,k;
string cw1,cw2,rlt,anm,unul,cy[15] = {"Ox","Tiger","Rabbit","Dragon","Snake","Horse","Goat","Monkey","Rooster","Dog","Pig","Rat"};
signed main(){
freopen("yearcow.in","r",stdin);
freopen("yearcow.out","w",stdout);
map<string,int> year;
map<string,string> ew;
cin>>n;
year["Bessie"]=2023;
ew["Bessie"]="Ox";
for(int i=1;i<=n;i++){
cin>>cw1>>unul>>unul>>rlt>>anm>>unul>>unul>>cw2;
ew[cw1]=anm;
year[cw1]=year[cw2];
if(rlt=="previous"){
for(int i=0;i<=11;i++)
if(cy[i]==ew[cw2]) k=i;
while(true){
k--;
if(k==-1) k=11;
year[cw1]--;
if(anm==cy[k]) break;
}
//cout<<year[cw1]<<endl;
}
if(rlt=="next"){
for(int i=0;i<=11;i++)
if(cy[i]==ew[cw2]) k=i;
while(true){
k++;
if(k==12) k=0;
year[cw1]++;
if(anm==cy[k]) break;
}
//cout<<year[cw1]<<endl;
}
}
cout<<abs(year["Bessie"]-year["Elsie"])<<endl;
fclose(stdin);
fclose(stdout);
return 0;
}
Problem 2. Comfortable Cows
问题描述
Farmer John 的草地可以被看作是一个由正方形方格组成的巨大的二维方阵(想象一个巨大的棋盘)。初始时,草地上是空的。Farmer John 将会逐一地将 N ( 1 ≤ N ≤ 1 0 5 ) N(1≤N≤10^5 ) N(1≤N≤105) 头奶牛加入到草地上。第 i 头奶牛将会占据方格 ( x i , y i ) (x_i,y_i) (xi,yi),不同于所有已经被其他奶牛占据的方格 ( 0 ≤ x i , y i ≤ 1000 ) (0≤x_i,y_i≤1000) (0≤xi,yi≤1000)。
一头奶牛被称为是「舒适的」,如果它水平或竖直方向上与恰好三头其他奶牛相邻。Farmer John 对他的农场上舒适的奶牛数量感兴趣。对 1…N 中的每一个 i,输出第 i 头奶牛加入到草地上之后舒适的奶牛的数量。
输入格式
输入的第一行包含一个整数 N。以下 N 行每行包含两个空格分隔的整数,表示一头奶牛所在的方格坐标 (x,y)。输入保证所有方格的坐标是不同的。
输出格式(输出至终端 / 标准输出)
输出的第 i 行包含前 i 头奶牛加入到草地上之后舒适的奶牛的数量。
输入样例
8
0 1
1 0
1 1
1 2
2 1
2 2
3 1
3 2
输出样例
0
0
0
1
0
0
1
2
样例说明
在前四头奶牛加入之后,位于 (1,1) 的奶牛是舒适的。
在前七头奶牛加入之后,位于 (2,1) 的奶牛是舒适的。
在前八头奶牛加入之后,位于 (2,1) 和 (2,2) 的奶牛是舒适的。
测试点性质
测试点 1-4 满足 N≤400。
测试点 5-12 没有额外限制。
解题思路
这题我们似乎只有两种出路:
思路一:模拟题目意思
思路二:枚举
我们知道,思路一总会由于庞大的计算量而TLE,只能过1~4个点,所以我们的出路思路只有思路二。
思路二(详细):每当我们get到一个新的点时,就枚举这个“新点”以及周围的四个点(因为加入的“新点”,只会影响前后左右四个点),然后查看每个点数周围是否共三个,用计数器将共有三个的点记录下来,输出即可。但是一定要注意边界处理哦,我由于没有认真处理边界在这里卡了一个多小时QWQ
方法
技巧枚举+边界处理
代码展示
#include <bits/stdc++.h>
using namespace std;
const int MAXN=1100;
int dx[10]={0,1,0,-1,0,0};//右开始
int dy[10]={0,0,-1,0,1,0};//右开始
int n,x,y,mp[MAXN][MAXN],ans=0;
int main(){
freopen("comfortable.in","r",stdin);
freopen("comfortable.out","w",stdout);
cin>>n;
for(int i=1;i<=n;i++){
cin>>x>>y;
mp[x][y]=1;
int f;
for(int j=1;j<=5;j++){
int mx=x+dx[j];
int my=y+dy[j];
if(mx<0||mx>1000||my<0||my>1000)
continue;
f=0;
if(mp[mx][my]){
for(int k=1;k<=4;k++){
if(mx+dx[k]<0||mx+dx[k]>1000||my+dy[k]<0||my+dy[k]>1000)
continue;
if(mp[mx+dx[k]][my+dy[k]])
f++;
}
}
if(f==3) ans++;
if(f==4) ans--;//原来的Comfortable点变为Uncomfortable点
}
cout<<ans<<endl;
}
fclose(stdin);
fclose(stdout);
return 0;
}
Problem 3. Clockwise Fence
问题描述
围绕 Farmer John 最大的草地的栅栏已经损坏了,如今他终于决定要换一个新的栅栏。
不幸的是,当 Farmer John 在铺设新栅栏时,一只巨大的蜜蜂突然出现,在他的草地上追着他跑,导致最后栅栏被沿着一条相当不规则的路径铺设。栅栏可以用一个字符串表示,每个字符为 “N”(north,北)、“E”(east,东)、“S”(south,南)、“W”(west,西)之一。每个字符表示一米长的一段栅栏。举例来说,如果字符串为 NESW,这表示栅栏从起点开始向北延伸 1 米,然后向东延伸 1 米,然后向南延伸 1 米,然后向西延伸 1 米,回到栅栏的起点。
栅栏的结束位置与开始位置相同,而这是栅栏的路径上唯一会被到达多次的位置(从而起始位置是唯一会被再次到达的位置,在栅栏结束之时)。结果,栅栏确实围起了一个草地上连通的区域,尽管这个区域可能形状十分奇特。
Farmer John 想要知道他铺设栅栏的路径是顺时针(当按字符串表示的顺序沿着栅栏的路径行走时被围起的区域位于右侧)还是逆时针(被围起的区域位于左侧)。
输入格式
输入的第一行包含一个整数 N ( 1 ≤ N ≤ 20 ) N(1≤N≤20) N(1≤N≤20)。
以下 N 行每行包含一个长度不小于 4 且不超过 100 的字符串,表示一个栅栏的路径。
输出格式
对 N 条输入的栅栏路径的每一条,输出一行,为 “CW”(clockwise,顺时针)或 “CCW”(counterclockwise,逆时针)。
输入样例
2
NESW
WSSSEENWNEESSENNNNWWWS
输出样例
CW
CCW
样例说明
以下为这两条栅栏路径,用 @ 表示起始位置:
*>*
^ v
@<*
*<*<*<*
v ^
*<@ *
v ^
- *>*>* *
v ^ v ^
- *<* * *
v ^ v ^
*>*>* *>*
解题思路
其实这题刚看出来蛮吓人的,但只要深入分析,会发现其实很简单,其实如果一个有棱有角的有向连通图(请允许我这么说)
顺时针的话会出现以下几种方向转换:
- 北->东
- 东->南
- 南->西
- 西->北
逆时针的话就会有以下几种方向转换:
- 北->西
- 西->南
- 南->东
- 东->北
所以我们可以设一个ans记录度数他们出现顺时针的防线转换就加上90°,逆时针则减去90°,如果最终的ans为360°,证明是顺时针旋转,若为-360°,则为逆时针旋转
方法
技巧 +思维
代码展示
#include <bits/stdc++.h>
using namespace std;
string s;
int main(){
freopen("direction.in","r",stdin);
freopen("direction.out","w",stdout);
int n,ans;
cin>>n;
for(int i=1;i<=n;i++){
cin>>s;
ans=0;
s+=s[0];
for(int j=0;j<s.size();j++){
if(s[j]=='E'&&s[j+1]=='N') ans+=90;
if(s[j]=='N'&&s[j+1]=='W') ans+=90;
if(s[j]=='W'&&s[j+1]=='S') ans+=90;
if(s[j]=='S'&&s[j+1]=='E') ans+=90;
if(s[j]=='E'&&s[j+1]=='S') ans-=90;
if(s[j]=='S'&&s[j+1]=='W') ans-=90;
if(s[j]=='W'&&s[j+1]=='N') ans-=90;
if(s[j]=='N'&&s[j+1]=='E') ans-=90;
}
if(ans==360)
cout<<"CCW"<<endl;
if(ans==-360)
cout<<"CW"<<endl;
}
fclose(stdin);
fclose(stdout);
return 0;
}