一、存储与可视化
import tensorflow as tf
tf.reset_default_graph() #清除default graph和不断增加的节点
# 定义变量a
a=tf.Variable(1,name="a")
# 定义b操作为a+1
b=tf.add(a,1,name="b")
# 定义c操作为b*4
c=tf.multiply(b,4,name="c")
# 定义d为c-b
d=tf.subtract(c,b,name="d")
# 设置一条合适的路径
logdir="D:/Project/Python/Tensorflow"
# 生产一个写日志的writer,将当前的图写入日志
writer=tf.summary.FileWriter(logdir,tf.get_default_graph())
writer.close()
运行后在指定目录产生了日志文件
在tensorboard查看方法
方法①:在Anaconda Prompt中先进入日志存放的目录(非常重要!!!)再运行TensorBoard,并将日志的地址指向程序日志输出的地址
命令:tensorboard --logdir=/path/log,启动服务的端口默认为6006;使用 --port 参数可以改编启动服务的端口
方法②:Win+R,打开cmd,直接输入tensorboard --logdir=/path/log。
方法二选一显示端口后
在浏览器进入对应端口,如我的是http://localhost:6006/,在GRAPHS可以可视化模型,各节点可以进一步展开
二、案例
1.波士顿房价预测(多元线性回归)
2.