fzu 1894

     很裸的单调队列,只要看过单调队列的人一眼就知道怎么做了。只要用单调队列来模拟一下就可以了。

      这里有个对单调队列的很好的解释:

      原文http://www.chenyajun.com/2011/01/24/5615

     

一个含有 n 项的数列(n <= 2000000),求出每一项前面的第 m 个数到它这个区间内的最小值。
用 f(i) 代表第 i 个数对应的答案, a[i] 表示第 i 个数,很容易写出状态转移方程:f(i) = min(a[j]), i -m + 1<= j <= i 。
我们维护这样一个队列:队列中的每个元素有两个域{position, value},分别代表他在原队列中的位置和 a[i],我们随时保持这个队列中的元素两个域都单调递增
那计算 f(i) 的时候,只要在队首不断删除,直到队首的 position 大于等于 i - m + 1,那此时队首的 value 必定是 f(i) 的不二人选,因为队列是单调的!
我们看看怎样将 a[i] 插入到队列中供别人决策:插入时,肯定在队尾插入,如果插入的值大于队尾的值,则 ok,否则为了保证 value 的递增,我们要在队尾删除元素,直到队尾元素小于 a[i]。


      根据这个思想所得的代码如下:

 

  1. #include<cstdio>
    #include<iostream>
    using namespace std;
  2. const int M=1010000;
    int front,rear;
    int Q[M];
    int a[M];
    int n,tt,mm;
  3. int main()
    {
     int t;
     scanf("%d",&t);
     while(t--)
     {
      front=0;
      rear=0;
      tt=0;mm=0;
      char ch,str[10],name[10];
      scanf("%s",str);
     
  4.  while(1)
      {
       scanf("%s",str);
       if(str[0]=='C')
       {
        scanf("%s%d",name,&a[tt]);
        while(front<rear && a[Q[rear-1]]<a[tt]) rear--;
        Q[rear++]=tt;
        tt++;
       }
       else if(str[0]=='G')
       {
        mm++;
       }
       else if(str[0]=='Q')
       {
        if(tt<=mm) {printf("-1/n");continue;}
        int len=tt-mm;
        while(front<rear && Q[front]<tt-len) front++;
        printf("%d/n",a[Q[front]]);
       }
       else break;
      }
     }
     
  5. return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值