很裸的单调队列,只要看过单调队列的人一眼就知道怎么做了。只要用单调队列来模拟一下就可以了。
这里有个对单调队列的很好的解释:
原文http://www.chenyajun.com/2011/01/24/5615
一个含有 n 项的数列(n <= 2000000),求出每一项前面的第 m 个数到它这个区间内的最小值。
用 f(i) 代表第 i 个数对应的答案, a[i] 表示第 i 个数,很容易写出状态转移方程:f(i) = min(a[j]), i -m + 1<= j <= i 。
我们维护这样一个队列:队列中的每个元素有两个域{position, value},分别代表他在原队列中的位置和 a[i],我们随时保持这个队列中的元素两个域都单调递增。
那计算 f(i) 的时候,只要在队首不断删除,直到队首的 position 大于等于 i - m + 1,那此时队首的 value 必定是 f(i) 的不二人选,因为队列是单调的!
我们看看怎样将 a[i] 插入到队列中供别人决策:插入时,肯定在队尾插入,如果插入的值大于队尾的值,则 ok,否则为了保证 value 的递增,我们要在队尾删除元素,直到队尾元素小于 a[i]。
根据这个思想所得的代码如下:
- #include<cstdio>
#include<iostream>
using namespace std; - const int M=1010000;
int front,rear;
int Q[M];
int a[M];
int n,tt,mm; - int main()
{
int t;
scanf("%d",&t);
while(t--)
{
front=0;
rear=0;
tt=0;mm=0;
char ch,str[10],name[10];
scanf("%s",str);
- while(1)
{
scanf("%s",str);
if(str[0]=='C')
{
scanf("%s%d",name,&a[tt]);
while(front<rear && a[Q[rear-1]]<a[tt]) rear--;
Q[rear++]=tt;
tt++;
}
else if(str[0]=='G')
{
mm++;
}
else if(str[0]=='Q')
{
if(tt<=mm) {printf("-1/n");continue;}
int len=tt-mm;
while(front<rear && Q[front]<tt-len) front++;
printf("%d/n",a[Q[front]]);
}
else break;
}
}
- return 0;
}