简单二维点的聚类

本文介绍了如何利用sklearn库中的K-Means算法进行二维数据点的聚类操作,展示了基本的聚类流程。
摘要由CSDN通过智能技术生成

今天用sklearn里面的K-Means实现了简单的点的聚类。

#!/usr/bin/python
#-*- coding : UTF-8 -*-

import numpy  as np
import scipy as sp
import matplotlib.pyplot as plt
import matplotlib.cm as cm

from sklearn import cluster

X = [[1,1], [14,15], [0.3, 2], [2, 1.9], [2,4], [13,16]
    , [12,17], [13, 13]]
    
k_means = cluster.KMeans(n_clusters = 2)
k_means.fit(X)
center = k_means.cluster_centers_
labels = k_means.labels_
error = k_means.inertia_       

#plot points using different colors
colors = cm.spectral(labels.astype(float) / n_clusters)
x1 = [x[0] for x in X]
y1 = [x[1] for x in X]
plt.scatter(x1, y1, c=colors)

x2 = [x[0] for x in center]
y2 = [x[1] for x in center]
plt.scatte
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值