- 博客(588)
- 资源 (12)
- 收藏
- 关注
原创 1×1卷积的作用
1×1卷积的核心价值在于高效调整通道维度、融合跨通道信息并引入非线性,同时保持空间结构不变。它是现代CNN中实现轻量化、模块化设计的关键组件之一。
2025-02-07 17:39:38
396
原创 MV3D网络结构
MV3D提出一种融合 RGB 和 Point Cloud的3D目标检测框架。 同时,和以往基于voxel的方法不同,它只用了点云的俯视图和前视图,这样既
2025-01-22 17:06:44
829
原创 PV-RCNN、PV-RCNN++ 网络结构
PV-RCNN的提出是想要综合 point-based 和 voxel-based 3D目标检测方法的优势:既要尽可能保留原始点的精确位置信息,又要降低运算消耗。Voxel & Point based Method 点和体素方法的结合:实现了更高的识别性能和可控的内存消耗。Voxel-based 体现在3D稀疏CNN场景编码的过程中,将场景转换为多种尺度的特征空间,并且生成了高品质的预选框。
2025-01-22 10:20:51
840
原创 PointPillars网络结构
PointPillars是一种新型的点云编码方法,通过将3D点云转化为2D伪图像进行目标检测,避免了3D卷积的计算复杂性1。PointPillars的主要贡献在于提出了一种将点云转换为伪图像的方法,并利用2D卷积神经网络(CNN)进行目标检测,从而在速度和精度上达到了很好的平衡。核心思路PointPillars的核心思想是将3D点云转换为2D伪图像,然后使用2DCNN进行处理。PointPillars其实延续了VoxelNet和SECOND的思路。
2025-01-20 16:20:45
752
原创 OpenPCDet 模块解析(以kitti数据+SECOND为例)-2
经过该类处理后我们最终可以得到三个类别的anchor,维度都是[z,y,x,num_size,num_rot,7],其中num_size是每个类别有几个尺度(1个);从上面流程可以看出对每个anchor进行回归和分类,得到了每个点为中心所产生anchor的类别预测结果,方向分类结果,box回归结果。但每个anchor是如何产生的呢?②每个anchor被指定九个信息,其中包含两个one-hot向量,一个用于方向分类,一个用于类别分类,还有一个七维的向量(x,y,z,dx,dy,dz,rot)。
2025-01-20 11:48:38
947
原创 OpenPCDet 模块解析(以kitti数据+SECOND为例)-1
OpenPCDet架构流程如图,接下来我们将以second模型为例,以kitti数据集说明模型总体处理流程。主要包括:数据增强、数据预处理、模型构建、后处理、训练、测试等。
2025-01-17 18:16:58
938
原创 3D目标检测数据集——Waymo数据集
Waymo Open Dataset是Waymo公司为了促进自动驾驶技术、机器感知和相关领域的研究而公开发布的一个大型数据集。该数据集包含了Waymo自动驾驶车队在多个城市和郊区环境中收集的高分辨率传感器数据,涵盖了白天和夜晚、晴天和雨天等多种天气和光照条件下的驾驶场景。Waymo 数据集包含 3000 段驾驶记录,时长共16.7小时,平均每段长度约为 20 秒。
2025-01-13 11:48:40
301
原创 Ubuntu the function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support
he function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support
2024-08-07 10:38:58
357
原创 基于Open3D的点云处理24-ICP匹配cuda加速
参考:docs/jupyter/t_pipelines/t_icp_registration.ipynb。
2024-06-01 22:02:33
719
原创 基于Open3D的点云处理23-Web可视化
首先在本地或远程计算机上启动可视化服务器,然后可以从任何具有现代浏览器的设备上查看3D 模型。Web 可视化服务器和客户端通过WebRTC(Web 实时通信)协议进行通信。将Open3D Web 可视化服务器作为独立应用程序运行,并在浏览器中查看3D 模型。它同时支持C++ 和Python。测试如下:examples/python/visualization/draw_webrtc.py。Open3D Web 可视化工具可在现代浏览器中实现3D 模型的高级渲染和可视化。
2024-06-01 21:35:26
566
原创 基于Open3D的点云处理22-非阻塞可视化/动态可视化
官网测试用例:examples/python/visualization/non_blocking_visualization.py。非阻塞可视化,即实时更新点云数据;
2024-06-01 21:28:54
403
原创 基于Open3D的点云处理20- 基于Visualizer类自定义可视化
change_field_of_view在当前的FoV下添加了指定的FoV。如设置90度,这将会在默认的60°上添加90°的FoV,当超过最大的FoV时,FoV将会被设置为90°。小于5度的话,FOV将会被设置为5°;函数draw_geometries_with_animation_callback将Python的回调函数rotate_view注册为主循环的空闲函数。当可视化窗口处于空闲状态的时候,将沿着Y轴旋转。这样就定义了动画行为。默认的可视化具有60°的FoV;视角可以设置为[5,90]度;
2024-06-01 16:20:12
354
原创 录制gif 强推LICEcap
官网:https://www.cockos.com/licecap/即按即用,录制好的gif可直接插入博客,yyds~
2024-06-01 15:46:16
247
原创 基于Open3D的点云处理19-模拟生成点云
模型采样+增加噪声:即使用官方提供的模型或者已有模型作为base,在此基础上做一些后处理,比如采样、增加噪点,如下代码,增加高斯噪声;光现投射即模仿传感器的一个扫描视角生成对应的点云,如模拟相机成像模型;BlenSor下载:https://www.blensor.org/结果如下:变成带毛刺的犰狳了。具体使用等下一贴~~
2024-05-26 20:08:23
378
自动驾驶中的三维目标检测算法研究综述-2024年11月
2025-01-14
ModelNet40-normal-resampled-part2
2025-01-13
ModelNet40-normal-resampled-part1
2025-01-13
LBP-Learning-Multi-scale-Block-Local-Binary-Patterns-for-Face-Recognition.pdf
2019-05-28
International-Conference-on-Computer-Recognition-Systems CORES 2013
2018-12-14
Edge Based Template Matching.pdf
2018-10-19
GeoMatch_src(VS2015+OpenCv3.3版)
2018-10-19
Xilinx_Vivado_SDK_Web_2018.1_0405_1_Win64
2018-04-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人